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Chapter 1

Abstract

During the period from April 2003 to March 2006, this research had been progressing
well as planned toward the ultimate goal of simulating the mistuned rotor with fully-
coupled fluid structure interaction. This is a multidisciplinary comprehensive project
that needs components from both fluid and structure dynamics. The following im-
portant capabilities have been achieved and the detailed results are presented in the
report.

1) A new accurate and efficient Riemann solver, Zha E-CUSP2 scheme, has been
developed and applied to moving grid systems for fully coupled fluid-structure inter-
action. The schemes are validated to possess very low numerical diffusion and be able
to capture crisp shock and contact discontinuities. The robustness and efficiency of
the scheme is essential for the calculation of fluid-structural interactions.

2) The fully coupled fluid-structural interaction methodology has been developed
and is successfully applied to predict the 2D and 3D transonic wing flutter. For
the fluid-structural interaction, an implicit time marching method with dual time
stepping algorithm and unfactored Gauss-Seidel line relaxation is employed to achieve
fast convergence rate. For the 2D cases, the exact structural equations are solved.
For the 3D AGARD wing, a modal approach is used to be consistent with the Subsets
of Nominal Modes (SNM) model of the Mistuned rotor.

3) A non-reflective boundary condition based on Navier-Stokes equations in gen-
eralized coordinates has been developed to accurately treat the boundaries of the
unsteady flows to remove the reflective waves.

4) The transient response (time domain) structural vibration model for mistuned
rotor bladed disk based on the efficient SNM model has been developed. The vi-
bration response results predicted by the SNM model for a full annulus bladed disk
with blade frequency variation agree very well with the results predicted by the finite
element model.
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4 CHAPTER 1. ABSTRACT

5) The code has been intensively validated with several cases including steady state
2D transonic airfoil and 3D wing, unsteady vortex shedding of a stationary cylinder,
induced vibration of a cylinder, forced vibration of a pitching airfoil, induced vibration
and flutter boundary of 2D NACA 64A010 transonic airfoil, 3D plate wing structural
response. The predicted results agree well with benchmark experimental results or
the results calculated by a finite element solver for structural response. The limited
cycle oscillation (LCO) is captured.

6) The full 3D AGARD wing flutter boundary is calculated and agree well with
the experiment. The "sonic dip" phenomenon is captured.

This solver based on the fully coupled fluid-structural interaction is ready to calculate
the mistuned rotor flutter and forced response. However, since the funding is only 3
years, which is one year shorter than the 4 years time period originally proposed, the
mistuned rotor simulation is not finished and will be completed in future when the
funding is available.

In this research project, we have 5 journal papers, 2 papers submitted for journal
publications, and 12 conference papers.
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Chapter 2

Introduction

Flow induced structural vibration is one of the most critical technical problems affect-
ing the readiness of the US Air Force fleet today. Due to the extremely complicated
non-linear flow-structure interaction phenomena, there is a lack of high fidelity com-
putational tools to study the basic physics and to predict the structural failure. The
problems are more complex for the aircraft engine turbomachinery than airframe be-
cause the turbomachinery has numerous blades and is much more complicated than
the one or two wings of the external airframe.

For aircraft engine turbomachinery, the most general flow induced vibration prob-
lem is the mistuning problem. The mistuning refers to the fact that, in a bladed disk,
blade responses can significantly differ from each other due to small geometric varia-
tions from blade to blade. The small variations typically result from within-tolerance
manufacturing imperfections or in-service wear-offs, which are difficult to eliminate in
the production process or during the life span of an engine. In other words, virtually
all turbomachinery bladed disks are mistuned. However, up to date, almost all of the
fluid-structure interaction research work focuses on the tunned systems because the
mistuned systems are much more challenging.

This research is to develop a methodology to couple a state of the art CFD code,
RANS3D (3D unsteady Reynolds averaged NS solver), with a state of the art struc-
tural model, SNM (Subset of Nominal Modes), for a mistuned bladed disk. The
aerodynamic force and blade motion of a full annulus rotor are unknown variables
and are simultaneously solved within each time step. No prescribed blade motion is
used to accurately represent the coupled system. The process proceeds in temporal
direction step by step until it reaches desired solutions for forced response or flutter.

The methodology developed in this research is based on the strategy of computing
frameworks recently suggested by Melville[7]. The computing frameworks is to fully
take advantages of the state of the art of each individual discipline and the multi-
disciplinary computation is connected through standard interfaces. In this research,
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10 CHAPTER 2. INTRODUCTION

the multi-disciplines involved are the CFD model and the structural model. Since
the methodologies of each individual discipline have been developed and matured
independently, each methodology will usually use different grid generation and time
marching scheme to achieve the highest possible accuracy and efficiency. A com-
mon interface to conserve the energy between the fluid aerodynamic forcing and the
structural deformation is necessary to combine the CFD and structural solvers. The
strategy of the computing frameworks will allow the two disciplines to continue to
develop their state of the art and ensure that the multi-disciplinary solver will always
be at the forefront of the technology.

Currently, the method used to predict the aerodynamic damping of mistuned
bladed disks is based on the Influence Coefficient Technique which requires prescribed
blade motion (Silkowski et. al., 2001) [8]. This technique assumes no structural cou-
pling between blades and does not account for the feedback from the mistuned struc-
ture to the fluid field or vice versa. The accuracy of such approach is questionable
when the structural coupling is important or highly nonlinear flow conditions exist.
For instance, at stall flutter region, there may exist large oscillating separation, ro-
tating stall cells, shock motion, oscillating tip vortex, etc. Under this circumstance,
it is not feasible to prescribe the blade motion caused by the complicated interaction
between the flow and the structure.

To simulate the vibratory response of a mistuned bladed disk, the sector model used
for a tuned system is no longer applicable. A model that simulates the whole bladed
disk is needed to take into account the asymmetric pattern of the blade vibration
around the full annulus (Hilbert and Blair, 2001) [9], which includes the differences
in amplitudes, unequal phase differences between adjacent blades, and sometimes
changes in blade mode shapes.

There are increasing efforts recently to couple a computational fluid dynamics(CFD)
solver with a structural solver, in particular for external airframe problems. Bendik-
sen et al. pioneered the research by using an explicit CFD code coupled with a
structural integrator based on the convolution integral to obtain the flutter boundary
for a NACA 64A010 airfoil[10]. Alonso and Jameson etc. developed a dual-time step
coupled aeroelastic solver for 2D airfoils[11, 12]. Similar techniques was applied to
3D wing with an finite element structural model by Liu etc[13]. Melville et al. devel-
oped a fully implicit method based on Beam-Warming scheme with a coupled modal
structural solver for a 3D wing[14].

Due to the difficulties in turbomachinery, calculation of fluid induced vibration
based on fully coupled fluid-structure interaction has began only very recently. The
research group in UK led by Dr. Imregun has made notable progresses (Breard, et
al. 1999, Sayma 2001a, Sayma 2001b, Sayma 2001c, Sayma 2001d) [15][16][17][18].
They carried out full annulus and multiblade row computations for forced response
and flutter. The flow solutions are primarily based on Euler equations with limited
3D Navier-Stokes modeling and the structural response is simulated by mode shapes
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of bladed disks. Nonlinear friction constraints are considered in their study; however,
no mistuning study was attempted. In addition, in their work, a mode superposi-
tion of the structure is incorporated into a finite element CFD solver. This method
hence may not best fit the computing frameworks[7]. In 2002, Doi and Alonso[19]
applied their dual time stepping CFD algorithm[11, 12] with the structural solver of
MSC/NASTRAN to simulate a tuned compressor rotor fluid-structural interaction.
In the model of Doi and Alonso[19], the fluid and structural models are closely cou-
pled but structural deformation is lagged. This method may be limited to first-order
accuracy in time regardless of the temporal accuracy of the individual solvers[14].

To achieve the research goal, the numerical strategy is given in the next chapter.
The details of the numerical algorithms are given in chapter 4.
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Chapter 3

Numerical Strategy

The challenges for high cycle fatigue prediction based on a fully coupled fluid-structural
interaction are two-folds, efficiency and accuracy. The fully coupled fluid-structural
interaction needs to iterate the flow and structural solver within each physical time
step. It is a very CPU time consuming task and the dynamic response of the system
is sensitive to the numerical dissipation introduced by the numerical scheme. Conse-
quently, it's required that the numerical scheme is able to model the flow field with
high efficiency and low numerical diffusion.

3.1 Low Diffusion High Efficiency Upwind Scheme

Recently, there have been many efforts to develop efficient Riemann solvers using
scalar dissipation instead of matrix dissipation. For the scalar dissipation Riemann
solver schemes, there are generally two types: H-CUSP schemes and B-CUSP schemes
[20, 21, 22]. The abbreviation CUSP stands for "convective upwind and split pres-
sure", named by [20, 21, 22]. The H-CUSP schemes have the total enthalpy from the
energy equation in their convective vector, while the E-CUSP schemes use the total
energy in the convective vector. Liou'§ AUSM family schemes [23], Van Leer-HMnel
scheme [24], and Edwards's LDFSS schemes [25, 26] belong to the H-CUSP group.

The H-CUSP schemes may have the advantage of better conserving the total en-
thalpy for steady state flows. However, from the characteristic theory point of view,
the H-CUSP schemes are not fully consistent with the disturbance propagation direc-
tions, which may affect the stability and robustness of the schemes [1]. The H-CUSP
scheme may have more inconsistencies when it is extended to the moving grid system.
It will leave the pressure term multiplied by the grid velocity in the energy flux, which
cannot be contained in the total enthalpy, and must therefore be treated as part of
the pressure term. From a characteristic point of view, it is not obvious how to treat
this term in a consistent manner.

13



14 CHAPTER 3. NUMERICAL STRATEGY

In this research, we developed an efficient E-CUSP scheme, Zha E-CUSP2 scheme,
which is consistent with the characteristic directions [1, 3]. The scheme has low
diffusion and is able to capture crisp shock profiles and exact contact discontinuities.
The scheme is more CPU efficient since it only uses the scalar dissipation. In addition,
is is fairly straightforward to extend the new scheme to the 3D moving grid system[27,
4, 28]. This is because the grid velocity belongs to the convective terms in the E-
CUSP schemes. The pressure term is determined by the weighted average based on
the wave eigenvalues from downstream and upstream. The new E-CUSP scheme
is more efficient than the Roe scheme without matrix operation. For a 2D nozzle
calculation for comparison, the CPU time to evaluate the flux using the new E-CUSP
scheme is only about 1/4 of that needed by the Roe scheme [1].

3.2 Implicit Time Marching Scheme

Among the researchers in the area of 3D time-marching aeroelastic analysis based on
Euler/Navier-Stokes approaches, Lee-Rausch and Batina[29][?] used a three-factor,
implicit, upwind-biased Euler/Navier-Stokes approach coupled with a lagged struc-
ture solver. Morton, Melville and Gordnier et al. developed an implicit fully coupled
fluid-structure interaction model, which used the Beam-Warming implicit approxi-
mate factorization scheme for the flow solver coupled with modal structural solver
[30][31][14][32]. Liu et al. developed a fully coupled method using Jameson's explicit
scheme with multigrid approach utilizing Euler equations and a modal structural
model[13]. Doi and Alonso[19] coupled an explicit Runge-Kutta multigrid RANS
flow solver with a FEM structure solver to predict the aeroelastic responses of NASA
Rotor 67 blade.

In this research, we have developed an implicit time marching algorithm using a
dual-time stepping unfactored line Gauss-Seidel iteration [5, 2, 4, 28]. The unfactored
Gauss-Seidel iteration is unconditionally stable and allows larger pseudo or physical
time steps than explicit method. It avoids the factorization error introduced by those
implicit approximate factorization methods, such as those used in [29][30][31][14][32].
Even though the factorization error diminishes within each physical time step, the
factorization error can limit the numerical stability. The linear stability analysis
shows that approximate factorized method is not stable for 3D computation even
though it is stable for 2D computation.

3.3 Non-Reflective Boundary Conditions

The accuracy of unsteady flow calculations relies on accurate treatment of boundary
conditions. Due to the limitation of computer resources, usually only a finite com-
putational domain is considered for a flow calculation. This means that we have to
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"cut off" the domain that is not of our primary interest. However, the cut boundaries
may cause artificial wave reflections, which may include both physical waves and nu-
merical waves[33]. Such waves may bounce back and forth within the computational
domain and may seriously contaminate the solutions and produce misleading results.
This is particularly true for internal flows such as the flows in turbomachinery, in
which the computational domain usually is confined very near the solid objects. For
example, previous studies indicated that the different treatments of numerical per-
turbation at upstream and downstream boundaries can change the compressor blade
stall inception pattern [34] [35].

The currently often used non-reflective boundary conditions for unsteady internal
flows are based on eigenvalue analysis of linearized Euler equations developed by
Giles[36]. However, Giles' method may only apply to the inviscid solutions which
require the far field flow to be uniform so that the propagation waves have the Fourier
mode shapes. For viscous flows, the mean flow in the downstream far field region may
be non-uniform due to the airfoil or blade wakes, which means that there will be no
Fourier mode shapes. In addition, the inconsistency of the Navier-Stokes governing
equations for the inner domain and linearized Euler equations at far field boundary
may also cause numerical wave reflections.

The more rigorous treatment of non-reflective boundary conditions (NRBC) for
Navier-Stokes equations is the one suggested by Poinsot and Lele in 1992[33] for Di-
rect Numerical Simulation of turbulence. However, the NRBC given by Poinsot and
Lele in [33] is only for the regular mesh aliened with the coordinate axises in Carte-
sian coordinates. The explicit time marching scheme was used in the calculation of
Poinsot and Lele. For practical engineering applications, the body fitted generalized
coordinates are usually necessary. In 2000, Kim and Lee [37] made an effort to extend
the NRBC of Poinsot and Lele from the Cartesian coordinates to generalized coor-
dinates. However, in their derivation, a flaw was made by absorbing the eigenvector
matrix into the partial derivatives, their formulations apply only if: 1) it is ID equa-
tion; 2) the eigenvector matrix is constant in the flow field; 3) the partial differential
equations satisfy Pfaff's condition. For multidimensional Navier-Stokes equations, all
these three conditions are not satisfied[38, 39]. Hence, the wave amplitude vector
derived in [37] is erroneous.

More recently, based on the characteristic approach of Poinsot and Lele[33], Bruneau
and Creuse [40] suggested a variation of the approximate treatment of the incoming
wave amplitude in the exit boundary conditions by assuming that the pressure and
velocity values will "convect" with time to the location where the phantom cells are
located. The results show the method works well. Prosser and Schluter [41] used
an approach based on a low Mach number asymptotic expansion of the the govern-
ing equations to improve the specification of time dependent boundary conditions.
With the help of the Local One-Dimensional Inviscid (LODI) relations, Moureau et
al. [42] implemented characteristic boundary conditions for multi-component mixtures
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in DNS and LES computations using a modified NRBC formulation.

In this research, we extend the NRBC system of Poinsot and Lele[33] from Carte-
sian coordinates to generalized coordinates and apply it numerically for unsteady
calculations in an implicit time marching method. In a finite difference or finite
volume approach, the governing equations are more straightforward to be solved in
generalized coordinates, in which a complex physical domain becomes a rectangular
computational domain (for 2-D case) or a hexahedral computational domain (for 3-D
case) with equal grid spacings. The moving grid effect can be naturally included
in the generalized coordinates. Strictly speaking, for finite differencing or finite vol-
ume methods, only solving the equations in generalized coordinates can preserve the
accuracy of high order numerical schemes.

In general, implicit methods permit a larger time step and are widely used for
many practical applications. To be consistent with the implicit solver of the inner
domain, in this paper, the NRBC equations are implicitly discretized and solved
simultaneously in a fully coupled manner. Two numerical cases are tested in this
paper: a vortex propagating through a outflow boundary and a transonic inlet-diffuser
flow with shock/boundary layer interaction. The numerical results indicate that the
present methodology is robust and accurate.

The strategy is to fully couple the flow and structural solver within each time step
by iterating the flow solution and structural deformation. Since the fully coupled
fluid-structural interaction is very CPU intensive, this research has developed high
efficiency high accuracy CFD and structural algorithms. The following sub-section
will outline the developed methodology. The detailed numerical algorithms are de-
scribed in next chapter.

3.4 Modal Structural Solver

Since the full annulus of a mistuned rotor will be calculated, the nonlinear 3D Navier-
Stokes equations are CPU intensive. Hence it is very important that the structural
solver is CPU efficient and accurate. Based on this consideration, the structural solver
completely based on the finite element method for the mistuned bladed disk is not
favored due to the high CPU cost.

For this proposed research, the structural solution for a mistuned bladed disk will
employ the SNM model in time domain(Yang and Griffin, 2001)[43] developed under
the support of the GUIde Consortium (Government, Universities, and Industry). The
SNM model uses a subset of tuned bladed disk modes to represent the vibration of a
mistuned bladed disk. It is verified that the SNM model is both numerically accurate
and computationally efficient (Srinivasan, 1999) [44].

Other well-recognized models for mistuned bladed disks include TURBO REDUCE
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(Kruse and Pierre, 1996)[45] and MISTRESS (Petrov et. al., 2000) [46]. TURBO
REDUCE utilizes a Component Mode Synthesis (CMS) technique that accounts for
blade frequency mistuning only. MISTRESS and SNM, on the other hand, employ
the Modal Reduction (MR) technique which allows general mistuning of the structure
including mass and stiffness variations. Since it is our desire to develop a methodol-
ogy that can be applied to general mistuning problems, Modal Reduction technique
(MISTRESS and SNM) became the method of our choice. A detailed comparison
of CMS and MR techniques for mistuned bladed disk vibration is documented by
Moyroud et al, 2002 [47].

We selected SNM over MISTRESS based on the following three reasons:

1. The fluid-structural interaction problem requires the calculation of the vibration
of all nodes on the surfaces of the airfoils of a bladed disk.

2. MISTREE uses the receptance method which is only efficient when the number
of nodal solutions calculated is limited (e.g., the study of the vibration of a mistuned
bladed disk with friction dampers only interests in the vibration at a limited number of
friction joints.) Using MISTRESS for our study would be computationally expensive
since the number of nodes on the airfoil surfaces of a bladed disk can range from
10,000 to 100,000.

3. SNM uses a limited set of tuned modes to represent the vibration of a mistuned
bladed disk. Its efficiency solely depends on the number of tuned modes of choice.
The typical number of modes needed to represent an industrial bladed disk is in the
order of 100 (Srinivasan, 1999) [44].

Considering CFD calculation is very CPU intensive, using SNM to simulate the
response of mistuned bladed disks becomes particularly appealing and essential to
make the simulation of the fully coupled fluid-structural problem possible.

3.5 High Performance Computing

The parallel computing capability based on SPMD (Single Program Miltiple Data)
is implemented in our code to reduce the wall clock calculation time. The reduction
of wall clock time by parallel computing is essential and necessary.
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Chapter 4

Discretization Schemes

4.1 Flow Governing Equations

The governing equations for the flow field computation are the Reynolds-Averaged
Navier-Stokes equations (BANS) with Favre mass average which can be transformed
to the generalized coordinates and expressed as:

&Q' WE' aF' WG' 1 E" aF" G'V (4.1)5t- + -ýTý+ W + ¢- n =• --- + (4.1)

where Re is the Reynolds number and

-Q (4.2)

E -/(&Q + 6E + 6F + 6.G) - -•(6tQ + El") (4.3)

F' - (7tQ + 77.E + iqyF + 77.G) = •(7tQ + F") (4.4)

-'= -•(•Q+ ±.E + (yF + (;G) = ( + G") (4.5)

EV= ((GEv + 6y~v + 6G,) (4.6)

F" = j(ThE, + + qG,) (4.7)
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G -= j(.E, + + .G) (4.8)

where the variable vector Q, and inviscid flux vectors E, F, and G are

IU fiffli + I&
Q=i, ,F= pfEif+i ,G= O i-

P6 / + (PE (+W + P)A3 ( + P)

The E", F", and G" are the inviscid fluxes at the stationary grid system and are:

Ell = ,E + ýyF + 6G,

F" = 77,;E + 771,F + q•G,

G" = (E + (1,F + ± G,

and the viscous flux vectors are given by

0 0 0
;TXX - pu 1r, - PV "U// PW" /-U"

E,= yP - PU"v" , F, = Tyy - pv v"v_• ,CT G = y - pw"v"

7'Xz - pU/W" ;r, - PV 1 - pW w/

QX QY Q.

In above equations, p is the density, u, v, and w are the Cartesian velocity compo-
nents in x, y and z directions, p is the static pressure, and e is the total energy per unit
mass. The overbar denotes the Reynolds-averaged quantity, tilde and double-prime
denote the Favre mean and Favre fluctuating part of the turbulent motion respec-
tively. All the flow variable in above equations are non-dimensionlized by using the
freestream quantities and a reference length L.

Let subscript 1, 2 and 3 represent the coordinates, x, y, and z, and use Einstein
summation convention, the shear-stress and Qx, Qy, Q, terms in non-dimensional
forms can be expressed in tensor form as

= 2 afti. ai-L aft49j = --- A---6•., + j4-x + (4.9)
3 &Xk 1x x

Q= i2 (Nrij - p-,uT,"),-o+C P "u' (4.10)
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where the mean molecular heat flux is

__ __ a2

l-Y )Prx (4.11)

The molecular viscosity i(T) is determined by Sutherland law, and a =

-i'yRT, is the speed of sound. The equation of state closes the system,

fie ( 1  1 2 P(U + 52 + V 2) + k (4.12)

where -y is the ratio of specific heats, k is the Favre mass-averaged turbulence kinetic
energy. The turbulent shear stresses and heat flux appeared in above equations are
calculated by Baldwin-Lomax model[48]. The viscosity is composed of y + pt, where
pt is the molecular viscosity and it is the turbulent viscosity determined by Baldwin
Lomax model. For a laminar flow, the pt is set to be zero.

4.2 Time Marching Scheme

The time dependent governing equation (4.1) is solved using the control volume
method with the concept of dual time stepping suggested by Jameson [49]. A pseudo
temporal term - is added to the governing equation (4.1). This term vanishes at
the end of each physical time step, and has no influence on the accuracy of the solu-
tion. However, instead of using the explicit scheme as in [49], an implicit pseudo time
marching scheme using line Gauss-Seidel iteration is employed to achieve high CPU
efficiency. For unsteady time accurate computations, the temporal term is discretized
implicitly using a three point, backward differencing as the following

OQ 3Qn+l - 4Qn + Qn-i (4.13)

& = 2At

Where n is the time level index. The pseudo temporal term is discretized with
first order Euler scheme. Let m stand for the iteration index within a physical time
step, the semi-discretized governing equation (4.1) can be expressed as

1 1.5 -R ,)+1,m]6Qn+1m+1 - R,+l,m 3Qf+lm - 4Q' + Q (- 1
[(-A--r + Y-t)I-- (•-a) ' S- - 2At _(4.14)

where the Ai- is the pseudo time step, R is the net flux going through the control
volume,
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-=[ e E R I+ (F'- -I • F )j + (G' - 1 G)k]ds (4.15)

where V is the volume of the control volume, s is the control volume surface area vec-
tor. Equation (4.14) is solved using the unfactored line Gauss-Seidel iteration. Two
line sweeps in each pseudo time steps are used, one sweeps forward and the other
sweeps backward. The alternative sweep directions are beneficial to the information
propagation to reach high convergence rate. Within each physical time step, the so-
lution marches in pseudo time until converged. The method is unconditionally stable
and can reach very large pseudo time step since no factorization error is introduced.

4.3 The Zha E-CUSP Scheme[I, 2]

To clearly describe the formulations, the vectors Q and E' in Eq. (4.1) are given
below:

Q- pi) E'= -E, E a-- fti+± I (4.16)

PE Pz13LT+ p )

(U is the contravariant velocity in 6 direction and is defined as the following:

U == 6t + 6i + 6-yý + 6v (4.17)

U is defined as:

U = 0 - 6t (4.18)

The Jacobian matrix A is defined as:

a- -AT-' (4.19)

where T is the right eigenvector matrix of A, and A is the eigenvalue matrix of A on
the moving grid system with the eigenvalues of:

(U + C, U - C, U, U, U) (4.20)
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where C is the speed of sound corresponding to the contravariant velocity:

C=cj + 2 + Q (4.21)

and where c = i-yRT is the physical speed of sound.

Due to the homogeneous relationship between Q and E, the following formulation
applies:

k = AQ = tki-1Q (4.22)

In an E-CUSP scheme, the eigenvalue matrix is split as the following:

( -C 00 00 00 00
0 i00 000 0 0 0
0 0 & =U[I]+ 0 0 0 0 0 (4.23)0 0 o0 0 0 0 oooo00 0 0 0 0+0 o o o o 0

The grid velocity term ýt[I] due to the moving mesh is naturally included in the
convective term, U, as given in Eq. (4.43). Therefore, Eq. (4.22) becomes:

(- 00o00
0 0 0 0 0E = TO[I]+ 0 0 0 0 0 }T-'Q= c+EP

0 0 0 0 0

pi(i + cyp5 (4.24)

where &c and &p are namely the convective and pressure fluxes. As shown above,
the way of splitting the total flux into convective and pressure fluxes in an E-CUSP
scheme is purely based on the analysis of characteristics of the system. As shown in
Eq. (4.24), the convective flux has the upwind characteristic 0 and is only associated
with the convective velocity. The pressure flux has a downwind and an upwind
characteristic and it completely depends on the propagation of an acoustic wave.
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The Zha E-CUSP2 scheme is based on the E-CUSP scheme suggested by Zha and
Hu [1], which is extended to a moving mesh system by the following:

E,• = }[()i (qWL + q°R) - IPUI 1 (q'R - q'L)] +
2 2 2

0 0\

P+gi Y + P-P v (4.25)

2 2P(U2P(UC) + CO L

where

= (RLUI• + pRUj) (4.26)
2

q =(4.27)

=1 (CL + OR) (4.28)
2 2U3=2(L + R)

-MUL - UR (4.29)ML• = MR =c

2 2

OuI{M L+IMLI + 1[,(L +1)2 ML + IMLI (4.30)

2 + ]}4 24.0

UF = C' MR2 - '!RI + aR[--1(MýIR -1)2 _ MR- IMR2 (4.31)
2 24 2

eL (P/P)L + (1///)R' LR = @P/P)L + (Pb/P)R (4.32)

1- 3 4.33

P= 1(M ± 1)2(2 T M) + cM(M2 
- 1)2 = (4.33)

(4.34)
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1(= -(L OR) (4.35)
2 2

Please note that, in the energy equation of the pressure splitting, U and C are
used instead of & and C. The term C is constructed by taking into account the effect
of the grid velocity so that the flux will transit from subsonic to supersonic smoothly.
When • = 0, Eq. (4.25) naturally returns to the one for a stationary grid.

For supersonic flow, when UL > C, Ei = EL; when UR < -C, Ei = ER.2 2

4.3.1 Numerical Dissipation

The low numerical dissipation at stagnation is important to accurately resolve wall
boundary layers. An upwind scheme can be written as a central differencing plus a
numerical dissipation.

To analyze the numerical dissipation at stagnation, the 1D Euler equation is used
as the example. Assuming u = 0, the numerical dissipation vector of the new E-CUSP
scheme at stagnation is:

ai
D 2 0o (4.36)

where

6P PR - PL (4.37)

The numerical dissipation of the Roe scheme at stagnation is:

/'(-y-_1)#i26p

DRoe =6- J) 0p (4.38)

where the-stands for the Roe's average[50].

Comparing eq.(4.36) and (4.38), it can be seen that the numerical dissipation of
the new E-CUSP scheme for the continuity equation vanishes at u = 0 while the Roe
scheme has the non-vanishing dissipation. For the energy equation, the two schemes
have equivalent dissipation. For ideal gas with the -y = 1.4, the coefficient of the
Roe scheme energy dissipation term is 2.5 times larger than that of the new E-CUSP
scheme.

In conclusion, even though there is one non-vanishing numerical dissipation term
in the energy equation for the new E-CUSP scheme, the overall numerical dissipation
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of the new E-CUSP scheme is not greater than that of the Roe scheme. The Roe
scheme is proved to be accurate to resolve wall boundary layers[51]. It is hence
expected that the new E-CUSP scheme should also have sufficiently low dissipation
to accurately resolve wall boundary layers. This is indeed the case shown by the
numerical experiment for a flat plate boundary layer.

4.3.2 Zha E-CUSP2 Scheme[3]

The original Zha-Hu scheme is proved to have low diffusion and is able to capture
crisp shock wave profile and exact contact surface[l]. However, the scheme is found
to have temperature oscillations near the solid wall region when the grids is skewed.
Therefore, the scheme used in the present study is the modified version scheme, Zha
CUSP2 scheme[52]. In this scheme, the total enthalpy instead of the static pressure
is used to calculate the numerical dissipation coefficients for the energy equation as
below:

= ~2(H/P)L 2(H/P)R

(H/I)L + (H/P)R' (H/p)L + (Hl/)R(

Note that Equation (4.39) is only used for the energy equation. For the continuity
and momentum equations, Equation (4.32) is still used as the smoothing coefficient.

4.4 Roe's Riemann Solver on Moving Grid System[4,

5]

The Roe's Riemann solver is also implemented in the solver as a benchmark scheme
to compare the results. Roe scheme is recognized as having very low diffusion and
can capture exact shock and contact discontinuities. In present study, the original
Roe scheme is extended to moving grid system as the following, for example, in •
direction:

1

E/ I½= I-[E"(QL) + E"(QR) + QL&,L + QR&tR - I-AI(QR - QL)li+½ (4.40)it 2J 2

where QL and QR are the reconstructed variables to the left and right sides of the
cell face, CtL and &tR are the reconstructed grid velocity component in ý direction to
the left and right sides of the cell interface i + ½, A is the Jacobian matrix, A = OE'

and it takes the form as A = TAT-1 , T is the right eigenvector matrix of A, A is
the eigenvalue matrix of A, and
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A = TAT-1 (4.41)

where A is the eigenvalue matrix on moving grid system with the eigenvalues of

(U +C,U-C,UU,U) (4.42)

where U is the contravariant velocity in ý direction on moving grid,

U"= + ý'ýi + 6j + ýIzv (4.43)

Sis the speed of sound corresponding to the contravariant velocity:

E =a + 6 + 2 (4.44)

where c = Vý7RT is the physical speed of sound. The r-' stands for the Roe-averaged
quantities. For example,

6 = (6L + 6 PR/PL)/(1 + PR/-PL) (4.45)

It can be proved that the eigenvector matrix T has exactly the same form as
the one without moving grid. The only difference between the moving grid and the
stationary grid system is that, for the moving grid system, the contravariant velocity
in the eigenvalues contains the grid velocity as given in Equation (4.43). It is hence
straightforward to extend the code from a stationary grid system to the moving grid
system using Roe scheme without major change.

The grid velocity is evaluated at the center of each cell and is determined by
the averaged value that counts the movement of the eight vertexes if hexahedral
control volumes are used. The grid velocity is reconstructed with 3rd order MUSCL
differencing.

4.5 Conventional Boundary Conditions

Two sets of boundary conditions are developed in this research. The first set is the
conventional boundary conditions. The second set is the non-reflective boundary
conditions to be described in Chapter 5.

The conventional boundary conditions used for both the steady state and unsteady
calculation are as follows:

(1) Inlet boundary conditions: The far field boundary is divided into inlet and
outlet boundaries. On inlet boundary, it is assumed that the streamwise velocity u
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is uniform, transverse velocity v = 0, and spanwise velocity w = 0. Other primitive
variables are specified according to the freestream condition except the pressure which
is extrapolated from interior.

(2) Outlet boundary conditions: All the flow quantities are extrapolated from
interior except the pressure which is set to be its freestream value.

(3) Solid wall boundary conditions: At moving boundary surface, the no-slip con-
dition is enforced by extrapolating the velocity between the phantom and interior
cells,

u0 = 2b - U1, v 0 = 2 Yb - v1, w= 2ib - W1 (4.46)

where u0, v0 and w0 denote the velocity at phantom cell, ul, v, and w, denote the
velocity at the 1st interior cell close to the boundary, and Ub, Vb and wb are the velocity
on the moving boundary.

If the wall surface is in 71 direction, the other two conditions to be imposed on
the solid wall are the adiabatic wall condition and the inviscid normal momentum
equation[30] as follows,

T = 0, -+ (4.47)

4.6 Moving/Deforming Grid Systems

In the fully-coupled computation, the remeshing is performed in each iteration. There-
fore, a CPU time efficient algebraic grid deformation method is employed in the com-
putation instead of the commonly-used grid generation method in which the Poisson
equation is solved for grid points. For clarity, the remeshing procedure for 2D cases is
sketched in Figure 12.131. This grid deformation procedure is designed in such a way
that the far-field boundary (j=jlp) is held fixed, and the grids on the wing surface
(j=l) moves and deforms following the instantaneous motion of the wing structure.
After the new wing surface is determined, two components of the displacement vector
at wing surface node dxj and dy1 can be calculated accordingly. First, the length of
each segment along the old mesh line is estimated as:

s8 = s 3 -I + Vi(xj - xj- 1 )2 + (yj - yj,-) 2  (j = 2,. ,jlp) (4.48)

where s, = 0 and the displacement vectors at wing surface node ( dxl, dy1 ) and at
the far-field boundary ( dxjlp, dyjlp ) are known. Then the grid node points between
the wing surface and the far-field boundary can be obtained by using following linear
interpolation:
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dxj dxjlp - dxl dxlsjlp - dxjlps, (4.49)
sjup -- Si Sjlp - Si

dyj dyjlp - dy + dyisjlp - dyjps, (4.50)
Sjip - Si sj1p - Si

This simple remeshing strategy is proved to be robust for all the cases investigated
in present study. By monitoring the accuracy criterion y+, it is shown that the method
can maintain the initial grid quality and keep almost the same mesh distribution
around the wing surface.

For 3D case, the Equation (4.51) becomes

8j = sj-1 + V/(xj - xj-l)2 +t (yj - yj-l)2 +U (zj - zj-l), (j = 2, . jlp) (4.51)

and one more equation is added to determined the z component of displacement
vector:

dzj = dzjp - dz + dzlslP - dzlps, (4.52)
sjlp - s + Sjip - si

4.7 Geometric Conservation Law

It was pointed out by Thomas et al. [53] that due to the mixed temporal and spa-
tial derivatives after discretization, an additional term appears, which theoretically
equals to zero but numerically still remains. Consequently numerical error could be
introduced in the discretized form of the equations of the flow motion if this term
is neglected. In order to reduce or avoid this error, the geometric conservation law
needs to be enforced. In other words, the following additional term should be added
to the right-hand side of the equations as a source term:

S=Q aI- + 0- +1-1±1-lI (4.53)

To implement this option in the flow solver, the source term is then linearized such
that

sn+ =S + a- L9  Q (4.54)

As has been observed in ref.[5], the overall performance of this numerical supple-
ment is beneficial with very little CPU time cost.
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Chapter 5

Non-Reflective Boundary
Conditions

5.1 Characteristic Form of the Navier-Stokes Equations[6]

The characteristic form of the Navier-Stokes equations in the generalized coordinates
will be solved to determine the non-reflective boundary conditions at the phantom
cells. To describe the derivation process, the ý direction will be taken as an exam-
ple. For the other two directions, the formulations can follow the same procedure
and the general formulations are given in the appendix. Based on the strategy of
Thompson[39] and Poinsot and Lele[33], the Navier-Stokes equations are expressed
first using primitive variables as the following:

Oq aq Oq _q
M- + A-M- + B -M•-7 + C M- = R, (5.1)

Tt 017 a(

where A, B, C are the Jacobian matrix

A E' = Of' OG' (5.2)A =- Bq" = -' C= (5--2)

where R, is the viscous vector on the right hand side of the Navier-Stokes equations,
(Equation (4.1)), q is the primitive variable vector:

q = v (5.3)
w

31
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M is the Jacobian matrix between the conservative variables and primitive variables

Mu 0 0 0

- i v 0 p 0 0 (5.4)
q w 0 0 p 0

•-_ pu pv pw I -_

where cP 2 1 (U2 + V2 + w2).

Equation (5.1) can be further expressed as:

-&q + q a- & q c•-Oq
9q+ + b--q + = M-Rv (5.5)

Where

a = M-1AM, b = M-1 BM, c = M- 1CM (5.6)

(1 0 0 0 0
10 0 0

-1 0 0 (5.7)_ 1-W 0 0 0
ý, -u(-1) -v(y-1) -w(y- 1) - 1

Matrix a, b, c have the same eigenvalues as Jacobian matrix A, B, C. In • direction,

U PX. PG~, Pz 0
0 U 0 0 C-

a t0 0 U 0 f (5.8)
0 0 0 U e

0 'p(X 'yPG 7PGz U

where U = Cu + ýyv + ý.w. Matrix a can also be expressed as

a = PAP` (5.9)

where A is the eigenvalue matrix, P is eigenvector matrix of a, and P` is the inverse
of P. They are given as the following
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( 0U 0 0 0
0 U 0 0 0

A 0 0 U 0 0 (5.10)
0 0 0 U+C 0
0 0 0 0 U-C

P= 2& 0 - V2, -2VI/2 (5.11)-2,, & 0 ý./2--&/v/-
0 0 0 ac, acC2

0 -•ii -&/c2

0 & -•d•
P-1= -& 0 -&/C 2  (5.12)

0 /v2- /y / P0 -&1V2- -ýyIV2 -&1V2- 6

where C cIV6l, IV61 = + / -//, ,= Iv, z = +z/IV l,
a = p/"'2/c, 63 = 1/V2pc, c is the speed of sound and determined by c -- 'yRT.

The Navier-Stokes equation, Equation (5.5) then can be expressed as:

T ~ a77 a(
-t-+q PAP l + ba-•q +cL•= Mal (5.13)

or
P-1q q pMb•1 O

+ AP-1 + P-lb+__ + P-'c- = P-1M-1p (5.14)

This is the characteristic form of the Navier-Stokes equations in C direction. Define
vector £ as:

L = AP-Oq (5.15)

The Navier-Stokes equations (Equation (5.14)) are then expressed as:

P-9 +C + P- + P--cl- = P-'M-'Rv (5.16)

Vector £ is given as the following:
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+ G(•) + Um -4A

( L i5 ~ Z 5 ( )+ý5 ~ J -ý ia ý C 0 L a 5

I= L3 U[A (-)+ •y•, )-L )- -C2 (5.17)

L4 (U + C)[1 (R) + + LL ()]
(u- c) [_- _L (u) - &Y_ - (.K - -L. L (- + -(P]

The vector L is the amplitude of the characteristic waves. If assume = 1, •
= 0, Equation (5.17) returns to the corresponding formulations in x-direction of

the Cartesian coordinates.

As pointed out in [38, 39], for multi-dimensional Navier-Stokes flow equations,
Equation (5.14), the matrix P`- can not be absorbed into the partial derivatives
because the flow equations does not satisfy Pfaff's condition and the matrix can not
be treated as constants. In other words, it is incorrect to express the characteristic
form of the Navier-Stokes equations in the form given in [37] (page 2042) as:

OR OR -_aR + A- -+= P S* (5.18)

The local one-dimensional wave amplitude defined in [37] following Equation (5.18)
is therefore also erroneous.

To be consistent with the governing equations of the flow field within inner domain
and facilitate programming, it is desirable to express Equation (5.16) in terms of
conservative variables. Multiply Equation (5.16) by matrix M. P, the characteristic
Navier-Stokes equations expressed in terms of conservative variables in • direction is:

1Q' OF' OG' 1 ( OGMv a (5.19)-- •+ MP +-0-- + 0 e• 9 -+ -57- ,+
09t o9( & Re\\O 0+a(j±(5.19)

Define vector d as

(d1  (CLj + ý,yL 2 + U3_ + Qe(L 4 + L5)
d2  -&L2 + ý,L3 + (L- L5)

d=PL= 4ds = j +) (5.20)
P d4 1 -6y - fx£3 + -_2(L4 + L5)

Deinvcc (to + as)

Define vector D) as:
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ud1 + pd2

D=Md= vd, + pd 3  (5.21)
wd1 + pd4I U2 +V2 +w2)d, pud2 +pvd3 pwd4 d

Finally the characteristic form Navier-Stokes equations in conservative form and
generalized coordinates in ý direction can be expressed as:

OQ' 9F' WG' 1 (EM OF'v OG (5.22)+-- D + -+ + + + W F ]c)(.2
Ot O19 'q Re a6 O ~

Equation (5.22) will be solved to determine the non-reflective boundary conditions
in 6 direction. The Navier-Stokes equations in generalized coordinates and their
characteristic forms in r and ( directions can be obtained straightforwardly following
the symmetric rule and are given in the appendix.

By neglecting the transverse and viscous terms in Equation (5.22), the Local One-
Dimensional Inviscid (LODI) relation [33] in generalized coordinates is

0Q'9 + = 0 (5.23)

The LODI relation may be used to estimate the amplitudes of the characteristic
waves at boundaries. Numerical results show that the LODI relations works well for
the boundaries where the flow fields are smooth or uniform, and hence the transverse
and viscous terms are small or negligible. For those boundaries where the transverse
and viscous terms are significant, the LODI relations may perform poorly.

5.2 Non-Reflective Boundary Conditions[6]

Following the strategy suggested by Poinsot and Lele[33], the characteristic boundary
conditions for Navier-Stokes equations can be implemented based on Equation (5.22).
In the present study, Equation (5.22) is solved implicitly at the phantom cells in a
fully coupled manner with the Navier-Stokes equations governing the inner flow field.
For unsteady solutions, the dual time stepping method is used. The semi-discretized
equation for Equation (5.22) is:

[(1 + •.5) (aRb) n+I,m + (c•D• n+1m]j Qn+lm+l
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n+l, 3Qln+lm - 4Qn + Qn-1

Dn+lm 2At (5.24)

where

Rb -) + (F' - 1 F')j + (G' - G')k]-ds (5.25)
V Re Re W

Compare Equations (5.25) and (4.15), it is noticed that in Rb,, there is no E' flux,
which is replaced by vector D. D is treated as a source term.

Before proceeding to the further analysis, some notations need to be defined. For
the finite volume method used in the present study, a row of phantom cells are used
outside of the boundary. The boundary conditions are enforced by assigning values
to the primitive variables at those phantom cells. All the variables marked by the
subscript 'o' are for phantom cells. The variables at the interior cells adjacent to a
boundary are denoted by subscript 'i'.

Equation (5.22) provides the set of governing equations for NRBC, but the way to
implement the NRBC is not unique. The following is the method used in this study
and should not be considered as the only feasible method.

5.2.1 Supersonic outflow boundary conditions

For supersonic flow at exit, all the eigenvalues in Equation (5.10) are positive and the
disturbance propagates from inner domain to outside. The wave amplitude vector,
Equation (5.17) is evaluated using one side upwind differencing. For supersonic flow
at exit, using simple extrapolation may not generate physical wave reflection, but may
still generate numerical wave reflection[33]. Solving Equation (5.24) would achieve
a more accurate non-reflective boundary conditions for the supersonic flow. For su-
personic flow, the exit boundary conditions, po, pUo, pVo, pwo and peo are completely
determined by solving the Navier-Stokes equations in the characteristic form.

To evaluate the derivatives in vector L, either the first order or second order upwind
differencing may be used. For the present study, all the partial derivatives in vector
£ are calculated by first order upwind differencing.

5.2.2 Subsonic outflow boundary conditions

For subsonic flow at exit, the eigenvalue U - C is negative and the disturbance
propagates into the domain from outside. £1 to C4 can be still calculated by one-side
upwind differencing. However, L5 corresponding to the eigenvalue of U - C must be
treated differently. The commonly-used method to provide a well posed boundary
condition is to impose p = poo at the outflow boundary. This treatment however
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will create acoustic wave reflections, which may be diffused and eventually disappear
when the solution is converged to a steady state solution. For unsteady flows, the
wave reflection may contaminate the flow solutions. To avoid wave reflections, the
following soft boundary condition was suggested by Rudy-Strikwerda[54] and used by
Poinsot-Lele[33].

£ 5 = K(P Pe) (5.26)

where KI is a constant and is determined by I oa(1-.AM2)c/L as given by Poinsot and
Lele in [33] for Cartesian coordinates. The corresponding form used in the generalized
coordinates is

r = ,1l - M 2.I/(Vf2JpL) (5.27)

where M is the maximum Mach number in the flow field. L is the characteristic
length of the domain. c is the speed of sound. The preferred range for constant a is
0.2-0.5. The absolute value of 1 - M 2 is to ensure the term is positive because the
maximum Mach number can be greater than 1 in a transonic flow field.

If £5 = 0, it switches to the "perfect" non-reflective boundary condition. However,
this boundary condition is not well posed and will not lead the solution to the one
matching the exit pressure p,. Equation (5.26) assumes that the constant exit pres-
sure p(, is imposed at infinity. There exists reflection if p / p,, which is needed for
the well posedness of the numerical solution. For the unsteady problems, Equation
(5.26) will make the mean value of the pressure at the exit very close to p,,. However,
the pressure at the individual control volume may not be exactly equal to p,) even
though the value of L5 can be very small. In this sense, Equation (5.26) may be
considered as "almost non-reflective boundary conditions".

The complete boundary conditions used at the exit are the pressure at infinity for
Equation (5.26) and three zero gradient viscous conditions:

6 + c + Gr2y) = 0 (5.28)

(6Tr 2 + 6 + G7-.)= 0 (5.29)

-(6Q. + Wy + GzQ) = 0 (5.30)

The amplitudes of the outgoing characteristic waves, £L, £2, £3, and £4 are com-
puted from the interior domain. All the conservative variables at phantom points are
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obtained by solving the characteristic N-S equations, Equation (5.22). All the trans-
verse and viscous terms in Equation (5.22) can be evaluated in the same way as the
inner domain control volumes. The Roe's Riemann solver is also used for computing
fluxes F' and G', central differencing is used for fluxes E,, F•, F•. This strategy
makes maximum use of the existing code and minimizes the programming work in
implementing the boundary conditions.

5.2.3 Subsonic inflow boundary conditions

At C = 1 boundary, four characteristic waves, L1, £2, £3, and £4 are entering the
domain while £5 is leaving the domain. For 3-D open field flow cases, four physi-
cal boundary conditions are needed, i.e. uo, vo, wo and po are set to be constant.
Other primitive variables are specified according to the freestream condition. The
total energy peo is obtained by solving the energy equation in Equation (5.22). The
outgoing wave £5 can be estimated by using interior variables. The rest of the waves
are evaluated by using the LODI relations, Equation (5.23). £L - £4 can be expressed
as

Li " (£4±£5), L2=-y "' (£4-i- 5), L3=4.~ P (£4±£s), £4=£,5

(5.31)

5.2.4 Adiabatic wall boundary conditions

At a 3-D adiabatic wall (77 = constant), the no-slip condition is enforced by extrapo-
lating the velocity between the phantom and interior cells, u. = -ui, vo = -vi, and
w, = -wi. One more physical boundary condition to be imposed on the wall is the
adiabatic condition, 2' = 0. From the adiabatic condition, the Po can be expressed871
as the following

Po = A (5.32)
Po Pi

The total energy peo is determined by solving the energy equation in Equation
(5.22). Then using Equation (5.32) and Equation (??), Po and po can be solved.
Cross a r/boundary, vector £ is expressed as the following:
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I allV[(a)) + - 4- 8 - o]

I2 1 Y-(2-)1 (L )+i J ~ - 7 kJ
V-3 -V ' (5.33)14(V + C)[•-?/ a(R) + _9 + . + 8ofE +

(V5 C " V a• ' J v/2- J J N52 a7 lJ - 77) J

where V = 77.u + 77yV +7, rw and C = clVl, lV?7 = 2 + 2 + q It can be seen

from Equation (5.33), the characteristic waves £L - L3 vanish since V = 0 at wall
surface. At lower wall (r7 = 1), the outgoing characteristic wave L5 is computed from
the interior domain. The incoming wave £4 is estimated by using LODI relations.
By solving 2nd - 4th equations in Equation (5.23), it yields £4 = £5. At upper wall
(maximum ii), the £4 becomes the outgoing wave, and it can be computed from the
interior domain. £C is the incoming wave which is evaluated by £f = £4.
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Chapter 6

Structural Models

6.1 Modal Approach for 3D Wing[4]

The governing equation of the solid structure motion can be written as,

Md2 + Cd +Ku=f (6.1)
dWt2  dt

where M, C and K are the mass, damping, and stiffness matrices of the solid respec-
tively, u is the displacement vector and f is the force exerted on the surface node
points of the solid, both can be expressed as:

U- ui ,f= fi ,

U, f,

where N is the total number of node points of the structural model, ui and fi are
vectors with 3 components in x, y, z directions:

ui= uiy j, f= f2• •.
Uiz fiy

Ui 2 , f/ fi~

fi is dynamic force exerted on the surface of the solid body. In a modal approach,
the modal decomposition of the structure motion can be expressed as follows:
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K(b = M4A (6.2)

or

KO., = A3M¢j (6.3)

where A is eigenvalue matrix, A diag[Al,-..., A•,, , A3N], and jth eigenvalue Aj -

W, , yj is the natural frequency of jth mode, and the mode shape matrix 4)

Equation (6.15) can be solved by using a finite element solver (e.g. ANSYS) to
obtain its finite number of mode shapes Oj. The first five mode shapes will be used
in this paper to calculate the displacement of the structure such that,

u(t) = X aj(t)oj = I)a (6.4)

where a = [a,, a2 , a3 , a 4 , a 5 ]T. Substitute Equation (6.4) to Equation (6.1) and yield

M)(d2a C da)dt2  
dt

Multiply Equation (6.5) by 4 )T and re-write it as

l +iad2a (6da)
dt 2  dt

where P-- [P1,P 2,- ., .P, ,PN]T, the modal force of jth mode, P3 = c'f, the
modal mass matrix is defined as

S= 4TMI) = diag(m,.. ,-- 3,... ,m3N) (6.7)

where mj is the modal mass of jth mode, and the modal damping matrix is defined
as

ITC4 = diag(cl,. .. , ,.. ., C3N) (6.8)

where cj is the modal damping of jth mode, and the modal stiffness matrix is defined
as

]k = 4T K(b = diag(k,.. -,ki,... ,k3g) (6.9)
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where kj is the modal stiffness of jth mode. Equation (6.6) implies

d2 aj dai 2 (.10
dt2 + 2(jwj- f + a, (610)

where (j is modal damping ratio. Equation (6.18) is the modal equation of struc-
ture motion, and is solved numerically within each iteration. By carefully choosing
reference quantities, the normalized equation may be expressed as

d 2a + 2~ (j +j = ;T .V. (bf ) -- (6.11)dt.* 2( w, -d---+ • W a v*

where the dimensionless quantities are denoted by an asterisk, W, is the natural
frequency in pitch, b, is the streamwise semichord measured at wing root, L is the
reference length, fin is the measured wing panel mass, v* is the volume of a conical
frustum having streamwise root chord as lower base diameter, streamwise tip chord as
upper base diameter, and panel span as height, V* = u-o and U.. is the freestream

velocity.

Then the equations are transformed to a state form and expressed as:

als}
[M] ý + [K]{S} = q (6.12)

where

aj ,M [I],K= (Eý_•2 2 - 'q= )h2•
-- j 2(OjTf*V* (_I fin

To couple the structural equations with the equations of flow motion and solve them
implicitly in each physical time step, above equations are discretized and integrated
in a manner consistent with Equation (4.14) to yield

(1 1+ +K) 6Sn+lm+l -M3Sn -4Sn + S-I - KS'•+",m + qn+lm+l

(6.13)

where n is the physical time level index while m stands for the pseudo time index.
The detailed coupling procedure between the fluid and structural systems is given in
the following chapter.
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6.2 Mistuned Bladed Structural Model for Tran-
sient Response

The Subsets of Nominal Modes (SNM) structural model suggested by Yang and Grif-
fin [43] is developed in this research for time domain to calculate the structural modes,
which are expensive to calculate if the direct finite element approach is used. Yang
and Griffin recognized that each mistuned structural mode can be well represented
by a subset of the tuned structural modes. The SNM approach was developed to
take the finite element modal solution of the tuned structure as the input to formu-
late a reduced order model for the mistuned structure. The order of the problem
thus dropped from millions to hundreds, and the computational time to compute a
mistuned structural mode is reduced from hours to seconds. This is critical to the
simulation of fully coupled fluid-structural problems because only very limited com-
putational resource is required in addition to the CPU intensive CFD computation.
A brief description of the SNM model is in the following:

a) Transformation from Finite Element Domain to Modal Domain

First, the equation of motion in the finite element form is transformed into the
modal coordinates. Assuming that the variation of the mechanical damping is negli-
gible, then

(M! + A!M)& + &°& + (ko + Ak)a = p (6.14)

In eq. (6.14), the modal coordinate vector a is the displacements of the tuned
modes, AM0 , C&, and k 0 are the modal mass, damping, and stiffness matrices of the
tuned system, and typically diagonal, AK and AM are the changes in modal stiffness
and mass matrices, and p is the modal force vector. Eq. (6.14) can then be cast in a
state space form,

BS, = Ay + q (6.15)

where

B ( 0 y Ao) (6.16)( 0 (]0) +0 A 6
A= (•0+A!) -_o 0 q- (p 6.7

Eq. (6.15) is the modal equation of motion for the mistuned structure. Without
truncating the modes, the order of eq. (6.15) is 2N where N is the number of degrees of
freedom of the whole wheel finite element model. However, the order can be reduced
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to 2n, where n is tuned modes selected in the SNM representation, to simulate the
mistuned structural vibration with sufficient accuracy. N (millions) is typically much
greater than n (hundreds).

b) Diagonalization of the Modal Governing Equation

To improve the computational efficiency, the solution of eq. (6.15) can be further
expressed in terms of its right eigenvectors R which satisfies the following eigenvalue
problem

AR= BRA (6.18)

where A is the diagonal eigenvalue matrix of the mistuned structure. Applying the
classical modal analysis technique, eq. (6.15) can be transformed in a diagonal form

BP = A,3 + 4l (6.19)

where the diagonal matrices b and A are the generalized mass and stiffness ma-
trices, 3 is the generalized coordinates, and q is the generalized forces. Since the
components of 3 are decoupled from each other, eq. (6.19) can be simulated at very
low computational costs.

Note that, in eq. (6.19), b and A mathematically define a mistuned bladed disk
structure, the generalized force t is derived from the pressure distribution on the
airfoil surfaces, and the time-varying unknown 3 will be solved at each time step.
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Chapter 7

Fully Coupled Fluid-Structural
Interaction

To rigorously simulate fluid-structural interactions, the equations of flow motion and
structural response need to be solved simultaneously within each iteration in a fully
coupled numerical model. The calculation based on fully coupled iteration is CPU
expensive, especially for three dimensional applications. The modal approach can
save CPU time significantly by solving the modal displacement equations, Eq. (6.18),
instead of the original structural equations, Eq. (6.15), which is usually solved by
using finite element method. In the modal approach, the structural mode shapes
can be pre-determined by using a separate finite element structural solver. Once
the several mode shapes of interest are obtained, the physical displacements can be
calculated just by solving those simplified linear equations, i.e., Eqs. (6.18) and
(6.4). In present study, the first five mode shapes provided in Ref.[55] are used
to model the wing structure. These pre-calculated mode shapes are obtained on a
fixed structural grid system and are transformed to the CFD grid system by using a
3rd order polynomial fitting procedure. The procedure is only performed once and
then the mode shapes for CFD grid system are stored in the code throughout the
simulation.

The procedure of the fully coupled fluid-structure interaction by modal approach
is described below:

(1) The flow solver provides dynamic forces on solid surfaces.

(2) Integrate fluid forces at each surface element to obtain the forcing vector f.

(3) Use Eq. (6.18) to calculate modal displacements aj(j = 1, 2, 3, 4, 5) of the next
pseudo time step.

(4) Use Eq. (6.4) to calculate physical displacement u of the next pseudo time
step.
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(5) Check the maximum residuals of both solutions of the flow and the structural
equations. If the maximum residuals are greater than the prescribed convergence
criteria, go back to step (1) and proceed to the next pseudo time. Otherwise the
calculation of the flow field and the structural displacement within the physical time
step is completed and the next new physical time step starts. The procedure is also
illustrated in the flow chart given in Fig. 12.132.

Initial flow field and structural
solutions, Q", S"

Aerodynamic forces

-II

Cy Structural displacerment , i
by solving structural _. ,,

U) equations sn+l.ml J
0. 0.

CFD moving and deforming
mesh u)

E E
I�
0

CFD flow field by solving
flow governing equations •,
IL-Sa.~l ,m~l IL.J

X
z

No CFD and structural Yes

Figure 7.1: Fully coupled flow-structure interaction procedure



Chapter 8

Results and Discussion

8.1 Validation of Zha-Hu E-CUSP Schemes[I]

The original Zhu-Hu E-CUSP scheme described from Eq. 4.25 to 4.35 was developed
and then used as the basis for the Zha E-CUSP2 scheme.

8.1.1 Shock Tubes

For shock tube problems, the interests are focused on: 1) the quality (monotonicity
and sharpness) of the shock and contact discontinuities; 2)the maximum allowable
CFL number to be used for explicit Euler method.

For explicit Euler time marching scheme, it is desirable that the CFL number is
close to the upper limit of 1.0. For the 1D linear wave equation with CFL=I and 1st
order upwind scheme, the numerical dissipation and dispersion vanish. For nonlinear
Euler equations, it is also true that the closer the CFL to 1.0, the less the numerical
dissipation.

The Sod Problem

Fig. 12.1 to 12.5 are the computed temperature distributions using different upwind
schemes with first order accuracy compared with the analytical result of the Sod
problem[56]. Since the computation stops before the waves reach either end of the
shock tube, the first order extrapolation boundary conditions are used at both ends
of the shock tube for all the schemes.

The maximum allowable CFL number for a scheme is defined as: beyond which
the solution will either be oscillatory or unstable. The new E-CUSP scheme (Zha
CUSP in the figures) achieves maximum CFL of 1.00, and the shock profile is the
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crispest and remains monotone (Fig.12.1). The maximum allowable CFL of Roe and
Van Leer scheme are 0.95 and 0.96 respectively. The new E-CUSP scheme takes three
grid points across the shock wave, while the Roe and Van Leer schemes take four grid
points (see Fig.12.1, 12.2 and 12.3). The Van Leer scheme generates a tail at the end
of the expansion wave (see Fig. 12.3). Interestingly, the Van Leer-HlInel scheme can
reach maximum CFL =1.0 and the shock profile is also crisper than the original Van
Leer scheme with no tail generated at the end of the expansion wave (see Fig. 12.4).
All the schemes smear the contact surface to a similar extent. The expansion wave
is captured well by all the schemes. The AUSM+ scheme has the unexpectedly low
maximum allowable CFL of 0.275. The whole shock and contact surface profiles are
seriously smeared due to the low maximum CFL number.

The table 8.1 given below summarizes the maximum allowable CFL number for
each scheme. Overall, for the Sod 1D shock tube problem, the new scheme suggested
in this paper performs the best based on the shock sharpness, monotonicity, and
stability.

Table 8.1: Maximum CFL Numbers for Sod 1D Shock Tube

Scheme CFL Number
The new scheme (Zha CUSP) 1.00
Van Leer-Hldnel 1.00
Van Leer 0.96
Roe 0.95
Liou AUSM+ 0.275

Slowly Moving Contact Surface

This is a shock tube case used in [57] to demonstrate the capability of the scheme to
capture the contact surface. The initial conditions are [p, u,p]L = [0.125, 0.112, 1.0],
[p, u,p]R = [10.0, 0.112, 1.0] . All the results are first order accuracy. Fig. 12.6 shows
that the new E-CUSP scheme, the Roe scheme and the AUSM+ scheme all can resolve
the contact surface accurately as they are designed. The results of those schemes are
at time level 0.01. The velocity is uniformly constant and the density discontinuity is
monotone. The new E-CUSP (Zha CUSP) scheme has far higher CFL number than
the other schemes with the value of 1.00. The Roe scheme has the max CFL=0.3,
and Liou's MUMS+ has 0.48. Fig.12.7 shows that the Roe scheme generates large
velocity oscillations when CFL=0.35, greater than its max CFL=0.3.

The schemes of Van Leer, Van Leer-HInel severely distort the profiles of the contact
surfaces as shown in Fig. 12.8. The velocity profiles are largely oscillatory. The
density jumps are also more smeared.
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The table 8.2 lists the maximum CFL number of each scheme for the slowing
moving contact surface. Again, the new scheme outperforms the other schemes by
having the highest CFL number and still maintain the monotonicity.

Table 8.2: Maximum CFL numbers of the schemes resolving the contact surface

Scheme CFL Number
The new E-CUSP (Zha CUSP) scheme 1.00
Liou AUSM+ 0.48
Roe 0.32
Van Leer fail
Van Leer-Hinel fail

8.1.2 Entropy condition

This case is to test if a scheme violates the entropy condition by allowing the expansion
shocks. The test case is a simple quasi-ID converging-diverging transonic nozzle[58,
59]. The correct solution should be a smooth flow from subsonic to supersonic with no
shock. However, for an upwind scheme which does not satisfy the entropy condition,
an expansion shock may be produced.

For the subsonic boundary conditions at the entrance, the velocity is extrapolated
from the inner domain and the other variables are determined by the total temper-
ature and total pressure. For supersonic exit boundary conditions, all the variables
are extrapolated from inside of the nozzle. The analytical solution was used as the
initial flow field. Explicit Euler time marching scheme was used to seek the steady
state solutions. All the schemes use first order differencing.

Fig. 12.9 is the comparison of the analytical and computed Mach number distribu-
tions with 201 mesh points using the new scheme and the scheme of Roe, Van Leer,
Van Leer-Hdnel, Liou's AUSM+. The analytical solution is smooth throughout the
nozzle and reaches the sonic speed at the throat (the minimum area of the nozzle,
located at X/h = 4.22). It is seen that both the Roe scheme and Van Leer scheme
generate a strong expansion shock at the nozzle throat. Both schemes can converge
to machine zero (12 order of magnitude) with CFL=0.95 even with the expansion
shock waves.

The Van Leer-Hdnel scheme can not converge even with CFL=0.01. The result
plotted in Fig. 12.9 is the one before it diverges. It shows an expansion shock with
the Mach number jumping from 0.74 to 1.42. The AUSM+ also has difficulties to
converge for this case. Using CFL=0.05, it managed to reduce the residual by 4 order
of magnitude. The solution of the AUSM+ also shows an expansion shock with the
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Mach number jumping from 0.86 to 1.17.

The new E-CUSP scheme does not have an expansion shock wave at the sonic point,
but is not smooth due to the discontinuity of the first derivative of the pressure at the
sonic point. This is shown as a small glitch at the sonic point in fig. 12.9. The glitch
does not affect the scheme to converge the solution to machine zero with CFL=0.95.

As indicated in [58, 59], the amplitude of the expansion shock decreases when the
mesh is refined. When the 2nd order schemes with the MUSCL differencing are used,
all the expansion shock waves as well as the glitch of the new scheme at the sonic
point disappear. Since this paper is to compare the original Riemann solver schemes,
no entropy fix[60] that can remove the expansion shock of Roe schemes was used.

8.1.3 Wall Boundary Layer

To examine the numerical dissipation of the new scheme, a laminar supersonic bound-
ary layer on an adiabatic flat plate is calculated using first order accuracy. The in-
coming Mach number is 2.0. The Reynolds number based on the length of the flat
plate is 40000. The Prandtl number of 1.0 is used in order to compare the numer-
ical solutions with the analytical solution. The baseline mesh size is 81x61 in the
direction along the plate and normal to the plate respectively.

Fig. 12. 10 is the comparison between the computed velocity profiles and the Blasius
solution. The solutions of the new scheme (Zha CUSP), Roe scheme, and AUSM+
scheme agree very well with the analytical solution. The Van Leer scheme significantly
thickens the boundary layer. The Van Leer- Hdnel scheme does not improve the
velocity profile.

Fig.12.11 is the comparison between the computed temperature profiles and the
Blasius solution. Again, the new scheme (Zha CUSP), Roe scheme, and AUSM+
scheme accurately predict the temperature profiles and the computed solutions ba-
sically go through the analytical solution. Both the Van Leer scheme and the Van
Leer- Hdnel scheme significantly thicken the thermal boundary layer similarly to the
velocity profiles.

Table 8.3 shows the wall temperature predicted by all the schemes using the base-
line mesh and refined mesh. The predicted temperature value by the Van Leer scheme
has a large error. The Van Leer- Hdnel scheme does predict the wall temperature
accurately even though the overall profile is nearly as poor as that predicted by the
Van Leer scheme. The new scheme, Roe scheme and AUSM+ scheme all predict the
temperature accurately.

All the results mentioned above are converged based on mesh size. The wall
temperatures using the refined mesh of 161 x 121 are also given in table 8.3. There is
little difference between the results of the baseline mesh and the refined mesh. The
refined mesh does not help to reduce the large numerical dissipation of the Van Leer
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scheme. When the 2nd order schemes are used, both the velocity and temperature
profiles of the Van Leer scheme and Van Leer- Hdnel are improved (not shown).

Scheme T,,a11 , Mesh 80 x 60 Twa11, Mesh 160 x 120
Blasius analytical solution 1.8000 1.8000

The new E-CUSP (Zha CUSP) scheme 1.8025 1.8018
Roe scheme 1.8002 1.7996

Liou AUSM+ 1.8000 1.8000
Van Leer 1.8328 1.8333

Van Leer-Hiinel 1.7970 1.7996

Table 8.3: Computed non-dimensional wall temperature using first order schemes
with the baseline mesh and refined mesh

8.1.4 Transonic Converging-Diverging Nozzle

To examine the performance of the new scheme in two-dimensional flow and the
capability to capture the shock waves which do not align with the mesh lines, a
transonic converging-diverging nozzle is calculated as inviscid flow. The nozzle was
designed and tested at NASA and was named as Nozzle A1[61]. Third order accuracy
of MUSCL type differencing is used to evaluate the inviscid flux with the Minmod
limiter. Fig.12.12 is the computed Mach number contour using the new E-CUSP
scheme with the mesh size of 175 x 80. In the axial direction, there are 140 mesh
points distributed downstream of the nozzle throat, where the oblique shock waves
are located. The grid is clustered near the wall. For clarity, the coarsened mesh is
drawn as the background with the Mach contours to show the relative orientation of
the shock waves and the mesh lines. The nozzle is symmetric about the centerline.
Hence only upper half of the nozzle is calculated. The upper boundary uses the
slip wall boundary conditions and the lower boundary of the center line uses the
symmetric boundary conditions.

As indicated by the wall surface isentropic Mach number distribution shown in
fig.12.13, the flow is subsonic at the inlet with the Mach number about 0.22 and is
accelerated to sonic at the throat, and then reaches supersonic with Mach number
about 1.35 at the exit. Fig.12.12 shows that right after throat, an expansion fan
emanates from the wall and accelerates the flow to reach the peak Mach number
about 1.5. Due to the sharp throat turning, an oblique shock appears immediately
downstream of the expansion fan to turn the flow to axial direction. The two oblique
shocks intersect at the centerline, go through each other, hit the wall on the other
side, and then reflect from the wall. Such shock patten is repeated to the exit and
the shock strength is weakened with the flow going downstream. Fig. 12.13 shows
that the isentropic Mach number distributions predicted by the new CUSP scheme
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and the Roe scheme agree fairly well with the experiment. The new E-CUSP scheme
and the Roe scheme have virtually indistinguishable results.

The mesh refinement study indicates that the mesh resolution in the axial direction
does not affect the shock resolution much. The axial mesh size of 280 downstream of
the throat yields only slightly better shock resolution than the size of 70. However,
the mesh size in the vertical direction dramatically changes the shock resolution. The
niesh size of 80 in the vertical direction yields much better resolution than the mesh
size of 50. This can be seen from the isentropic Mach number in fig.12.13, which
shows that the mesh size of 175 x 80 generates much sharper profiles than those of
the mesh 175x 50 for the first and second shock reflections.

For this transonic nozzle with the mesh size 175 x 80 on an Intel Xeon 1.7Ghz
processor, the CPU time per time step per node to calculate the inviscid flux is
2.5871 x 10's for the new scheme, which is about 25% of the CPU time of 1.0284 x
10's used for the Roe scheme. This is a significant CPU time reduction.

8.1.5 Transonic Inlet-Diffuser

To examine the performance of the new scheme for shock wave/turbulent boundary
layer interaction, a transonic inlet-diffuser[62] is calculated as shown by the Mach
number contours in fig.12.14, which has the exit back pressure equal to 0.83 times of
the inlet total pressure. The Reynolds number based on the throat height is 4.38 x 101.
The Baldwin-Lomax[48] algebraic turbulence model is used. Third order accuracy of
MUSCL-type differencing with the Minmod limiter is used for the inviscid fluxes and
the second order central differencing is used for the viscous terms.

A normal shock is located downstream of the throat as shown in fig.12.14. No flow
separation is generated under this back pressure. The baseline mesh size is 100 x 60.
When y+ is held as constant and the mesh is refined in both the horizontal and
vertical direction, the results have little variation and are converged based on mesh
size. All the inlet-diffuser results presented in this paper are from the mesh size of
100 x 120. The mesh in the horizontal direction is clustered around the shock location
to better resolve the shock profile.

Fig. 12.15 is the comparison of the upper wall surface pressure between the experi-
ment and the computation. The agreement is very good except that the computation
predicts the shock location a little downstream of the experimental shock location and
the shock strength a little too strong. It is found that the shock profile is sensitive
to the y'. The y' value of 2,2 x 10-, 7 x 10-6 are tested. The smaller y' yields
a little closer shock location to the experiment. The results shown in fig.12.14 and
12.15 have the y' value of 2 x 10'. The small y' effect is believed due to the first
order extrapolation of the pressure on wall surface instead of the requirement of the
turbulence modeling. In the region with no shock, the first order pressure extrapola-
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tion on the wall is insensitive to the distance of the first cell to the wall, while in the
shock region it is sensitive due to the large streamwise gradient. As indicated in fig.
12.15, the Roe scheme predicts the shock location slightly closer to the experiment
than the new CUSP scheme.

When the back pressure is reduced to 0.72 times of the inlet total pressure. The
normal shock is stronger and the flow separation is induced. The same mesh as the
previous case is used for this case. Fig.12.17 is the predicted pressure distribution
compared with the experiment. Both the new CUSP scheme and the Roe scheme
predict the shock location accurately, but the shock strength predicted is too strong.
However, the new scheme has the pressure profile in the separation region downstream
of the shock noticeably closer to the experiment than that predicted by the Roe
scheme.

It should be pointed out that the turbulence modeling is a critical factor for the
prediction accuracy of the shock wave/turbulent boundary layer interaction. Hence
the discrepancy between the calculation and experiment shown above is only partially
attributed to the different discretization schemes.

Fig.12.17 is the pressure contours computed using pot/pt = 0.72 with the new
scheme, Roe Scheme, and Liou's AUSM+ scheme. A curved A shock is formed due
to the shock wave/turbulent boundary layer interaction. The shape of the Mach
contours of the new scheme (Zha CUSP) and the Roe scheme are very much alike.
The contours computed by the AUSM+ scheme has significant oscillations near the
wall.

8.2 Validation of the Zha E-CUSP2 Scheme[3]

The Zha E-CUSP2 scheme defined from Eq. 4.25 to 4.39 was validated for the shock
tube and laminar boundary layer. The results are as good as the original Zha-Hu
scheme or better. More importantly, the Zha E-CUSP2 scheme has cured the tem-
perature oscillation of the original Zha-Hu scheme as shown below.

8.2.1 Transonic Converging-Diverging Nozzle

To examine the performance of the new scheme in two-dimensional flow and the
capability to capture the shock waves which do not align with the mesh lines, a
transonic converging-diverging nozzle is calculated as inviscid flow. The nozzle was
designed and tested at NASA and was named as Nozzle A1[61]. Third order accuracy
of MUSCL type differencing is used to evaluate the inviscid flux with no limiter.

Fig.12.18 is the computed Mach number contours using the original Zha CUSP
scheme and the Zha CUSP2 scheme with the mesh size of 175 x 80. The nozzle is
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symmetric about the centerline. Hence only upper half of the nozzle is calculated.
The upper boundary uses the slip wall boundary conditions and the lower boundary
of the center line uses the symmetric boundary conditions. The Mach contour lines
computed by the two schemes look very much the same. However, if the temperature
contours near the wall is zoomed in, it can be seen that the temperature contours
computed by the Zha CUSP scheme has large oscillations as shown in Fig. 12.19, (a).
The temperature oscillation exist along the whole upper wall and lower symmetric
boundary. The temperature oscillations are removed by the Zha CUSP2 scheme as
shown in Fig. 12.19, (b). All the other flow variables are smooth for the new scheme.

The reason that the original Zha CUSP scheme has no temperature oscillation
shown in Fig. 2 for the flat plate, but has oscillation for the inviscid nozzle may be the
following: 1) The laminar Navier-Stokes equations provide some physical dissipation
to smoothen the flow; 2) The boundary layer gradient may generate some numerical
dissipation to smoothen the flow; 3) The 1st order scheme (piecewise constant) is
used for the flat plate. The 1st order scheme is monotone and has higher numerical
dissipation than the 3rd order scheme used for the nozzle.

8.3 2D Flow Induced Vibration

8.3.1 Stationary Cylinder

The flow past a stationary cylinder is used as an unsteady flow validation case. The
baseline mesh dimensions are 120x80 in circumferential and radial directions. The
far field boundary is located 20 diameters away from the center of the cylinder. The
Reynolds number based on the free-stream condition and cylinder diameter is, Re
= 500. The laminar Navier-Stokes equations will be solved due to the low Reynolds
number.

The computed drag and lift coefficients are shown in Figure 12.23. As shown in
the figure, the lift oscillates at certain frequency in terms of the Strouhal number.
The drag coefficient oscillates with twice that frequency. The mesh refinement study
and computed Strouhal number, drag, lift and moment coefficients are listed in Table
8.4

Table 8.4 shows that the solution is converged based on mesh size. The computed
lift frequency by Zha-Hu CUSP scheme agrees well with the experimental results of
Roshko[66] and Goldstein[64], and is closer to the experimental results than the one
computed by by Alonso et al.[65], which uses more grid points.
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Table 8.4: Results of Mesh Refinement Study and comparison with the experiments
Mesh Dimension Stcd I Stc, I Stcm T CL Cd

120x80 0.4395 0.2197 0.2197 ±1.1810 1.4529±0.1305
200x120 0.4516 0.2246 0.2246 ±1.2267 1.4840±0.1450

(Roshko 1954[63]) 0.2075
(Goldstein 1938[64]) 0.2066

384x96 (Alonso 1995[65]) 0.46735 0.23313 1.14946(Cimax) 1.315 23(Cdavg)

8.3.2 Vortex-Induced Oscillating Cylinder

Structure Model of Elastic Cylinder

For the computations of the vortex-induced oscillating cylinder, which is elastically
supported as shown in Figure ?? so that it oscillates only in the direction aligned
with or normal to the incoming flow, the structural dynamic equations which govern
the motion of the cylinder are:

m: + CQx +K~xD (8.1)

mij + CQ + Kyy = L (8.2)

These equations are solved implicitly together with the equations of flow motion,
Equation (4.14), in a fully coupled manner. In Equation (8.1), ,, ±, and x represent
the dimensionless horizontal acceleration, velocity and displacement of the moving
object respectively. Similarly, ji, y, and y in Equation (8.2) represent their corre-
sponding ones in vertical direction. m, L, and D are the mass, lift, and drag per unit
span respectively, C. and Cy are the damping coefficients in horizontal and vertical
directions, Kx and Ky are the spring constants in horizontal and vertical directions.
In present study, this 'self-excited oscillators' is designed to have the same response
in both direction, i.e. Cx = Cy and K. = Ky.

If the normalization procedure is applied to Equations (8.1) and (8.2) by using the
same reference scales of those used for the equations of flow motion, the following
nondimensional equations are obtained

!i + 2( (1 + (2)X = 2-Cd (8.3)

9+ 2 (2 + (2 ) = 2 C (8.4)

where • is the nondimensional structural damping coefficient calculated by • =
2 mx ,i is the reduced velocity defined by Ui= -, b is radius of the cylinder,



58 CHAPTER 8. RESULTS AND DISCUSSION

w = m, the mass ratio, ps Cd and Cp are the drag and lift force
coefficients respectively. Then the equations are transformed to a matrix form and
expressed by

[M]--• + [K]{S} = q (8.5)

where X 0 -1 0 0 00
S=() M =2[I]K(=2 0 0r -Cd

y Y ' [11, K 0 0 0 -1 q 0
(1)2 2~(Q) p

To couple the structural equations with the equations of flow motion and solve them
implicitly in each physical time step, above equations are discretized and integrated
in a manner consistent with Equation (4.14) to yield

(1-1 + 1'5 M + K) 6S+m+l = -M 3Sn+lm -2At4Sn + S-1 -KSn+lm + qn+lm+l

(8.6)

where n is the physical time level index while m stands for the pseudo time index.
The detailed coupling procedure between the fluid and structural systems is given in
section 4.

After validating the stationary cylinder vortex shedding flow, the cylinder is re-
leased to be controlled by the structure model as shown in Figure ??. The corre-
sponding structural equations are given in section 3.1. The laminar Navier-Stokes
equations are solved due to the low Reynolds number, Re = 500.

Using the temporally periodic solution obtained in the computation of stationary
cylinder as the initial flow field, the computation is resumed after the cylinder is let
to move in both streamwise and transverse directions. For the purpose of comparison
with the experimental data of Griffin[67] several different combinations of structural
parameters are used in the computations.

Morton et al.[30] suggested to use the reduced velocity f t such that the
structural oscillator works under or near the resonance conditions. Therefore the
computed St number from the stationary cylinder is used to determine ia. For all the
cases of oscillating cylinder, St is set to be 0.2, corresponding to ii = 1.5915. Different
mass ratios, p,, are used to test the different responses of the structural system. They
are equal to 1.2732, 5.0, and 12.7324 respectively. To match the wide range of the
experimental data, the damping ratio, C, is chosen from the range between 0.001 -
1.583.
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The dimensionless physical time step At = 0.05 is used, which corresponds to
approximately 100 time steps per period determined by the Strouhal number used.
The CFL number for the pseudo time steps varies from case to case. For the large
cylinder movement cases, smaller pseudo time steps are used to limit the displacement
of the cylinder during each iteration.

For the cases computed, the CFL number varies from 5 to 500. The iteration
number within one physical time step varies from 20 to 100. Fig. 12.24 shows a
typical iteration history within one physical time step. Both the residual of the
CFD solver and structure are reduced to machine zero. The structure solver usually
converges faster than the CFD solver.

Figure 12.25 displays the computed vorticity contours around the oscillating cylin-
der. It shows how the vortexes are shed at the moment when the cylinder bounds
back toward its mean position in y direction.

A typical trajectory of the center position of the moving cylinder is plotted in
Figure 12.26, which is similar to the results computed by Blackburn et al.[68] and
Alonso et al.[65]

All the numerical results for present study are plotted in Figure 12.27 for the three
values of p,. Also plotted are the computations of Alonso et al. [65] with p. =

5.0, computations of Morton et al.[30] with p =' 12.73, and the experimental data
of Griffin[67]. In the figure, the abscissa is the reduced damping with the form of
87r2St2(_- [68], and the ordinate is the cross-flow displacement of motion normalized
by the diameter of the cylinder. Overall, very good agreement is observed between
the present results and the experimental results, especially for the case of p, = 1.2732.
The figure shows that the higher values of mass ratios (L = 5.0 and IL = 12.7324)
give less satisfactory results than those with I, -- 1.2732, particularly at low damping
ratios. However, they agree well with the results of Morton et al.[30] (/t, = 12.73).

8.3.3 Elastically Mounted Airfoil

As the validation of the Zha-Hu CUSP scheme for transonic airfoils, the steady state
solution of the transonic RAE 2822 airfoil is calculated first. The freestream condition
for this study are listed in Table 8.5 below.

Table 8.5: Free-stream condition for RAE 2822 Airfoil

Mach number Static Pressure (psia) Temperature (R) Angle-of-Attack (deg) Reynolds Number]

0.729 15.8073 460.0 2.31 6.5"x×10'
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The turbulent Reynolds stress and heat flux is calculated by the Baldwin-Lomax
algebraic model[48]. This case is run using an O-type grid with three different di-
mensions, they are 128x50x1, 256x55x1, and 512x95xI respectively. The outer
boundary extends to 15 chords from the center of the airfoil. The experimental data
provided by Cook et al.[69] are available for validation. The comparison of pressure
coefficient on the airfoil is shown in Figure 12.28. Overall, very good agreement is
obtained between the computation and experiment for each mesh dimension, espe-
cially for the two larger ones which appear to be sufficient to capture the shock on the
suction surface of the airfoil without using any limiter. The important aerodynamic
coefficients from both simulation and experiment are summarized in Table 8.6.

Table 8.6: Aerodynamic coefficients and y+ for RAE 2822 Airfoil
Mesh Dimension Cd C, Cm Y+

128x50 0.01482 0.73991 0.09914 0.0833 - 2.3864
256x55 0.01455 0.73729 0.09840 0.1318 - 2.4016
512x95 0.01426 0.74791 0.09994 0.2309 - 2.0228

Prananta et al.[701 0.01500 0.74800 0.09800
Experiment 0.01270 0.74300 0.09500

It can be seen in Table 8.6 that the predicted lift coefficients with all mesh dimensions
agree well with the experiment. The computed drag and moment coefficients show
larger errors, but they have the similar accuracy as those computed by Prananta et
al.[70]. The relatively large error of the drag and moment may be mostly due to the
inadequacy of the turbulence model, which is difficult to predict the surface friction
accurately.

8.3.4 Forced Pitching Airfoil

As a validation case of the scheme for moving grid system, the forced pitching NACA
64A010 airfoil is calculated. For this transonic airfoil, the Reynolds averaged Navier-
Stokes equations with Baldwin-Lomax turbulence model are solved. Similar to the
previous computation of the flow over the stationary airfoil, an O-type mesh consisting
of 280x65 cells is employed for the computations of forced pitching airfoil. The
NACA 64A0101 airfoil is selected for this calculation because the experimental data
is available. The fine mesh zone or the non-deforming part of the mesh is shown in
Figure 12.29. The first grid point adjacent to the wall has the maximum y+ < 3.43

The NACA 64A0101 airfoil is forced in pitch around its quarter chord sinusoidally.
The angle of attack is imposed as a function of time as a(t) = am + aosin(wt), where
am and ao are the mean angle of attack and the amplitude of oscillation respectively.
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The w is the angular frequency which is directly related to the reduced frequency
K, 'c2-, where c is the airfoil chord, and U,, is the free-stream velocity. To
compare with the experimental results given by Davis[71], the primary parameters
used in the computation are listed as follows: am = 0, a, = 1.010, Re = 1.256 x 107,
Mm = 0.8, reduced frequency, K, = 0.202.

Again, the computation begins with the steady state flow field of the stationary
airfoil at 0 degree angle of attack with a dimensionless time step At = 0.1. The
transition period takes about 3 cycles and the results becomes periodic in time after
that. Figure 12.30 shows the lift oscillation versus the angle of attack after the flow
field reaches its temporally periodic solution. The computed lift oscillation agrees
well with the experiment[71], which has an evident improvement compared to the
recent result computed by McMullen et al. in 2002 [72].

Fig. 12.31 shows the computed moment coefficient compared with the experiment[71].
The computed moment coefficient does not agree as accurately with the experiment
as the lift coefficient does. However the results are very similar to those predicted by
Bohbot et al. [73] and McMullen et al. [72]. The large discrepancy between the compu-
tation and the experiment for the moment coefficient may be due to the inadequacy
of the turbulence modeling, which may not predict the surface friction accurately.

8.3.5 Flow-Induced Vibration of NACA 64A010 Airfoil

Structural Models

The structural model for the flow-induced vibration of a 2-D sweptback wing with a
NACA 64A010 cross-section is described in section. This model was first introduced
by Isogai [74] [74], and has been numerically investigated by several researchers [10]
[75] [70] [73].

The system of the elastically mounted airfoil is assumed to be undamped. The
airfoil is allowed to move in pitch about a given elastic axis and plunge vertically. The
pitch axis is defined by a distance a, which is the multiple of the semi-chord length
with the origin point located at the mid-chord position. If a is positive, it means the
axis is located downstream of the mid-chord, negative means being located upstream
of the mid-chord point.

A sketch of the elastically mounted airfoil is depicted in Figure 12.21. The motion
of such an elastic system can be described by using the following equations

mh + S,±& + Khh =-L (8.7)

Sh + d+ K = M (8.8)

where h and a are the plunging and pitching displacements respectively, m is the mass
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per unit span, Sc, is the static moment around the elastic axis, I,, is the rotational
moment of inertia, Kh and K& are plunging and pitching spring constants respectively,
L is the lift force and M is the moment around the elastic axis. The equations of the
structure motion (8.7) and (8.8) are normalized by using semi-chord b as the length
dimension, the uncoupled natural frequency in pitch w,' as the time scale, and are
expressed as

+h+xcd+ h=---C1  (8.9)

U2S C + + (8.10)
a /tr

where x,, is the static unbalance, Wh is the uncoupled natural frequency in plunge, r2

is the squared radius of gyration, U* is the reduced velocity defined as U-, C1 and Cm
are the lift and moment coefficient respectively. Since the time scale used in Equations
(8.9) and (8.10) is different from the one used in the governing equations of flow, the
structural dimensionless time t* needs to be re-scaled and keep its consistency with the
entire system during the computation, i.e., t* = &aLt*, where is the dimensionless
time for flow and the L is the length scale. Finally the equations are cast into the
form of Equations (8.5) and (8.6), and the corresponding matrices are

h 1 0 ' 0 0 0 -1 000
1 2()2 - 7  U1~o.2
Xc, 0 r 00 u.

The structural parameters used in this model are listed as the following: a = -2.0,
xc, = 1.8, •h-=1, r•2 = 3.48, and JL = 60. The elastic axis is located half a chord
upstream of the airfoil nose.

The unsteady Reynolds averaged Navier-Stokes equations with the Baldwin-Lomax
turbulence model are solved for the flow field in this study. The freestream conditions
are: Re = 1.256 x l0T, Mm = 0.825.

Due to the NACA 64A010 airfoil, an initial perturbation is

imposed to trigger the oscillating motion. The airfoil is forced to rotate sinusoidally
about its elastic axis at the natural frequency in pitch wc, with an angle of attack
amplitude, ao = 10. Usually the forced pitching mode lasts for 1 - 3 cycles. After
that, the elastically mounted airfoil is let to move in both plunging and pitching
directions, and then the dynamic response is recorded.

In present study, the search of the critical point on the transonic flutter boundary
at a given Mach number is conducted. The speed index, V* defined as h is the

parameter to classify damped, neutral and divergent responses of the airfoil when the
Mach is fixed. In this case, the total pressure and temperature need to be adjusted
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to match the certain value of the Re number. Several calculations are needed to
determine the critical point using a bi-section method.

In Figures (12.34) through (12.36) the time histories of plunging and pitching
displacements at M, = 0.825 are plotted for three different V*. In these figures,
from V* = 0.55 to V* = 0.70, the plots correspond to the damped, neutral, and
diverging responses respectively. The major task of calculating a flutter boundary
is to locate where the neutrally stable (critical point) is by looking at those plots
and determining where the neutral response occurs as the V* varies. When the
value of V* is smaller than the critical value on the flutter boundary, both plunging
and pitching displacements decay corresponding to the damped response as shown in
Figure (12.34). Once the value of V* coincides with or is close to the critical value,
the neutral response appears as shown in Figure (12.35). Any value of V* beyond
the critical value, a diverging response is expected as shown in Figure (12.36). Mach
number 0.825 is located at the bottom of the sonic dip as reported in[5, 70, 73]. The
predicted critical velocity index V* = 0.615 is consistent with the results computed
by those researchers.

8.3.6 2D Airfoil Flutter Boundary Prediction

After the validation of the flow induced vibration of NACA 64A010 Airfoil in chapter
8.3.5, a search of the flutter boundary is conducted. This is ultimately the most
important results needed for an aircraft and engine design engineer to determine if
the design is located within the safety margin.

At each Mach number, several calculations are needed to determine the critical
point on the flutter boundary using a bi-section method. At certain Mach number,
the flutter boundary is very 'thin', and more calculations are necessary to really
capture the critical points. The dynamic response immediately after the transonic
dip becomes very complex, and locating the flutter boundary in that region (Mach
= 0.875 - 0.9) is very difficult and time-consuming.

The V* and the frequency ratio - for the flutter boundary are plotted versus
Mach number in Figures (12.37) and (12.38) respectively. Also plotted in the figures
are the results from two other computations by Prananta et al. [70] and Bohbot et
al. [73]. The Mach number for the bottom of the transonic dip of 0.825 is consistent
with their results.

Overall, the present results compare well with the results of of Prananta et al. and
Bohbot et al. except that both values of V* and -! ratio are higher at high Mach
number region (Mach = 0.925 to 0.95). The primary difference between the present
results and their results are: 1) The present results are based on fully coupled fluid-
structure interaction. Their results are loosely coupled; 2) The Reynolds number of
the present results is about twice higher. Both the present results and Prananta et
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al. are based on the same Baldwin-Lomax turbulence model. To study the effect of
Reynolds number, the flutter boundary at Mach = 0.925 and 0.95 are re-calculated
with the same Reynolds number (6 x 106) used by Prananta et al. The difference is
small. Hence, the difference between the present results and the results of of Prananta
et al. and Bohbot et al. may be due to the fully coupled and loosely coupled algorithm.
Since there are no experimental results for comparison, it is difficult to judge which
result is more correct.

Except the flutter boundary, the present solver also has captured the Limit Cycle
Oscillation (LCO) phenomenon as shown in Figure (12.39). LCO occurs when the
velocity index is greater than the flutter velocity index[76]. The amplitude is large,
but stable. LCO is considered due to the nonlinear nature of the shock boundary layer
interaction occurring for transonic airfoil[76, 73]. Figure (12.40) presents a different
LCO with the second torsion mode more dominant.

Figure (12.41) shows an interesting situation happening at Mach = 0.875 and
in the area of V* = 2.5. Both plunging and pitching displacements of the system
increase rapidly immediately after the airfoil is set to be free, but then gradually
reach their steady state positions and stay there through the end of the computation.
Under this flow condition, the aerodynamic forces and moments are balanced by the
structure system. The angle of attack is stabilized at 2.90 and is in the range of the
cruise point which should be stable. This situation is only observed at Mach = 0.875,
and maybe named as 'standing'. The V* of the standing phenomenon is not located
at one point, but a region around V* = 2.5. The results and flow conditions of the
'standing' phenomenon needs to be confirmed by experiment.

8.4 SNM Model Used for Transient Response

A structural model is developed to simulate the transient response of a blade disk
structure. This model implements the original SNM theory (for steady state re-
sponses) and expands it to simulate transient responses. The study discussed in this
section assumes that the fluid forcing function is prescribed such that the transient
response can be carried out in the transient simulation of ANSYS. The prescribed
forcing function however does have multiple frequency components with all but one
primary frequency components decaying in time.

Fig. 12.42 shows a finite element model of 24-blade disk with dynamic character-
istics similar to a typical high compressor rotor. The finite element mesh is rather
coarse for the purpose of tractable computational cost in ANSYS benchmark com-
putation. When studying a realistic case, the mesh needs to be finer. The transient
responses of this model were computed by two methods: In the first method, the tran-
sient responses were calculated using the "Full Solution" function in ANSYS which
utilizes full system matrices (instead of reduced modal matrices in "Reduced Solu-
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tion" function) to avoid modal truncation error. The second method computes the
transient responses based on the SNM method. The SNM results are then compared
with the ANSYS benchmarks.

Both low frequency response and high frequency response of a tuned bladed disk
were studied.

8.4.1 Low Frequency Case

The blade tips are driven by prescribed forces with a circumferential pattern of zero
nodal diameter. The force is given by Eq.8.11,

f(t) fd, + fosin(wt) + ficos(1.4wt)ewt/1 000 + f2sin(O.7wt)ewt/ 2000  (8.11)

with fd 0,fo = 1, f] = 0.5, f2 = 2, and w = 500Hz. Note that the lowest natural
frequency of all zero nodal diameter modes is 495 Hz. The overall time history of
the force is shown in Fig. 12.43. Fig.12.44 shows that multiple frequency contents
(0.7w, w, and 1.4w) co-exist in the forces at the beginning of the simulation and Fig.
12.45 shows that only the primary frequency component (w) survives at the end the
simulation. The forcing function is chosen so to mimic the dynamic pressure of a
fluid field and to examine the accuracy of the SNM model.

Fig. 12.46 shows the envelopes of the responses of a tip node of a blade computed
by SNM and ANSYS. 24 modes of one blade mode family was used in the SNM
simulation. Closer inspections of the SNM and ANSYS results shown in Fig. 12.47
and Fig.12.48 verify that SNM is very accurate in predicting the transient response
for this case.

A worthy note is that the numbers of degrees of freedom in the ANSYS and SNM
simulations are 2256 and 24 respectively. The time saving of SNM is about 2 orders
of magnitude over this simplified ANSYS model. In the case of a realistic ANSYS
model, the time saving would be much greater.

8.4.2 High Frequency Case

In the high frequency case, the blade tips are again driven by prescribed the forces
defined by Eq. (8.11) with a circumferential pattern of zero nodal diameter. The
parameters of the force are fd 0,f0 o= 1j,f = 0.5, f2 = 2, and w = 2500 Hz.
Note that the 3rd natural frequency of all zero nodal diameter modes is 2506 Hz.
The overall time history of the force is shown in Fig. 12.49. Fig. 12.50 and 12.51
show that multiple frequency contents (0.7w, w, and 1.4w) of the force co-exist at the
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beginning of the simulation and only the primary frequency component (w) survives
at the end the simulation.

Fig. 12.52 compares the envelopes of the responses of a tip node of a blade com-
puted by SNM and ANSYS. Only 24 modes of the 3rd blade mode family were used
in the SNM simulation. Fig. 12.53 and Fig. 12.54 are closer examination of the
responses. It is apparent that SNM does not capture the response well initially when
the forcing frequency components and are yet to die out but does capture the re-
sponse quite well at the end when the primary frequency component dominates. This
is because of the lack of low and high frequency modes in the SNM model. In this
case, the SNM model actually acts as a frequency filter of the overall system. When
long term steady state solution is of the only interest, an SNM model with a single
blade mode family might be desirable.

To further verify the above statement, an SNM model with the 3rd blade mode
family and the neighboring families (2nd and 4th blade modes) was used for the
computation. Fig. 12.55, 12.56, and 12.57 compare the responses computed by SNM
and ANSYS. They show good agreement between SNM and the ANSYS benchmark.
Notice that the number of degrees of freedom in the 3-family SNM model is 72. The
time saving of SNM is about 1.5 orders of magnitude over the ANSYS model.

8.5 Non-Reflective Boundary Conditions

8.5.1 A Vortex propagating through a outflow boundary

The first test case is a subsonic vortex propagating flow in an open flow field. The
computed domain is rectangular inclined 30' about the horizontal axis as a validation
for the generalized coordinates. The subsonic inflow and outflow boundary conditions
are used at the inlet and exit, and far filed boundaries are used on the upper and lower
borders. In [331, a supersonic vortex propagating flow is chosen. It is known that a
subsonic vortex propagating flow is more difficult to deal with since the disturbance
propagates both upstream and downstream. To test present method under more
general conditions, the subsonic vortex propagating flow is selected for this study.

The computational mesh has a length of 2 units in streamwise direction which is
30 degrees to the x direction, while the width is 4 units in transverse direction. The
mesh dimensions are 60 x 100. The laminar Navier-Stokes equations is solved for this
flow with M = 0.8 and Reynolds number of 300.

A vorticity is initially located at the center of the domain when dimensionless time
t* = 0, and convected downstream toward the outflow boundary. The velocity flow
field is initially specified as
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U = u" 85+ (8.12)

C= cexp (X2 +v2 ) (8.13)

where u, and v, are the velocity components of the incoming flow, C, is the coef-

ficient that determines the vortex strength of the velocity field, and R, is the vortex
radius. The total energy field is initialized as

pe =pe +pexp( 2  (8.14)

where C, is the coefficient that determines the vortex strength of the total energy field.
Equations (8.12) and (8.14) are adopted from those used by Poinsot and Lele[33]. The
coefficients C, and C,, and radius R, are defined by

C,,/(cL) =-0.0005, Ce/(cL) = -0.02, R, = 0.15 (8.15)

The inflow and outflow boundary conditions used in this case are described in
previous section. The far field upper and lower boundaries are treated as perfect
non-reflective outflow boundary.

The flow field at inflow boundary is initially set to be uniform. The direction of the
incoming flow is parallel to the constant q7 lines. Obviously, at the inflow boundary,
the transverse flux and viscous terms are very small. The error caused by LODI
relations is very small and negligible.

To compare the present NRBC with the commonly-used outflow boundary condi-
tions (FPBC) in which the fixed downstream pressure is imposed for subsonic flow
simulations, the first computation is carried out with FPBC, which includes: at in-
flow boundary, u,, vo, p, are given such that the streamwise velocity component is
uniformly distributed and the transverse velocity component is equal to zero, the
pressure is extrapolated from the interior domain, p. = pi, then the total energy peo
can be computed from the equation of state; at outflow boundary, all the primitive
variables are extrapolated from the inner domain except the pressure is set to be
constant. The CFL number of the pseudo time step is 500. The physical time step
CFL is 0.74, which is determined by the time accuracy of the physical problem

The same case with the same initial flow condition and same CFL number is then
calculated using the NRBC developed in present study. The value of a in Equation
(5.27) is set to be 0.25. Figures 12.58 and 12.59 show the computed density contours at
four instants by FPBC and NRBC respectively. It can be seen from figure 12.58 that
the flow field is seriously distorted by the reflective waves when the vortex propagates
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through the exit boundary. But there is no noticeable distortion in the solution
calculated using NRBC as shown in figure 12.59. The vortex passes through the
outflow NRBC very smoothly. Figures 12.60 and 12.61 show the relative streamwise
velocity component, (u' - u T )/u'r contours at the same four instants by FPBC
and NRBC respectively. The same phenomenon is observed. Figure 12.62 shows the
time histories of IPmaz - Pminl for the full course of the computation. As can be seen,
the level of spurious pressure reflection caused by FPBC is much higher than the one
by NRBC.

8.5.2 Inlet-Diffuser Flow

To test the non-reflective boundary conditions for realistic engineering problems. A
transonic inlet-diffuser with shock wave boundary layer interaction [62] is computed
to demonstrate the advantage of the NRBC.

8.5.3 Steady State Solutions

The steady state solution of the inlet diffuser is calculated first to verify that the
NRBC is consistent with the steady state flow. The Reynolds Number is 3.45x105

and the inlet Mach number is 0.46.

The baseline geometry of the inlet diffuser has a height of H = 4.4cm at the throat
and a total length of 12.6H. This case is run using a H-type grid with the dimensions
of 110x56. The turbulence shear stress and heat flux are calculated by the Baldwin-
Lomax model[48]. The experimental data provided by Bogar et al.[62] are available
for validation.

As discussed before, for 3-D case, at • 1 inlet boundary, waves £l - L4 enter the
boundary and L5 leaves. Hence four physical boundary conditions are required at this
boundary. The amplitude of the outgoing characteristic wave 45 can be estimated
from the interior points.

According to [33], the inlet and wall NRBC are not as critical as the exit NRBC. For
this transonic inlet-diffuser case, at the upstream of the shock, the flow is supersonic.
Hence the perturbation will not propagate upstream. The NRBC at inlet therefore
may not be necessary. The conventional boundary condition at inlet is expected to
work well. However, at the downstream of the shock, the flow is subsonic. The
oscillation of the shock will generate strong reflecting waves at the exit boundary.
Therefore exit NRBC is essential for this case. For this reason, the inflow NRBC
is not used in this study. Instead, the inlet BC with given total pressure Pt, total
temperature Tt, and flow angle is used. The NRBC outflow and wall conditions used
are those described in previous section.

The Mach number contours are shown in Figure 12.63. Corresponding to different
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back pressure in the experiment, there are two cases of the flow, one has a weak
shock (pouatet/pt=0.8 2) and the other has a strong shock (poutlet/pt=0. 72 ). Figures
12.64 and 12.65 show the computed static pressure distributions compared with the
experimental data along the top and bottom wall for the weak shock case. Good
agreement is obtained between the computation and experiment.

Figures 12.66 and 12.67 show the static pressure distribution compared with the
experimental data along the top and bottom walls for the strong shock case. Due
to the strong shock interacting with the turbulent boundary layer, there is a flow
separation downstream of the shock, which is not well predicted. There may be two
reasons for the problem: 1) the flow is unsteady due to the separation and hence
the steady state solution can not capture the separation bubble length correctly; 2)
the Baldwin-Lomax turbulence model is inadequate to handle the non-equilibrium
separated flow.

Different a values from 0.1 to 0.35 are tested and the results show that the steady
state results are insensitive to the a value. The fixed pressure boundary conditions are
also applied to the same case, and achieve almost the same results as those computed
by the NRBC. This is because that, for the steady state solutions, the reflective waves
are eventually diffused when the steady state solution is converged.

8.5.4 Unsteady Solutions

The steady state calculation indicates that the NRBC is not essential since the ar-
tificial reflective waves are diffused when the solution is converged. However, it is
very different when the unsteady flow is calculated. For the inlet-diffuser case with a
strong shock wave, the fixed pressure outflow boundary conditions (FPBC) generates
strong reflective waves and makes the shock wave severely oscillating inside the duct.
The amplitude of the oscillation is far greater than the experimental results. When
the NRBC is applied, the shock oscillation is dramatically reduced.

Figures 12.68 and 12.69 show the time averaged pressure distributions compared
with the experimental data. The CFL number of the pseudo time step is equal to 5
for all the cases. The CFL number of the physical time step is about 3000, which gives
132 steps in a shock oscillation cycle of the computed dominant frequency 260(Hz).
The value of a in Equation (5.27) is 0.25. Due to the large shock oscillation, the
shock location is smeared out for the fixed pressure outflow boundary conditions
(FPBC). Hence the shock location, strength and the pressure downstream of the
shock are poorly predicted. When the NRBC is applied, the reduced shock oscillation
yields sharp shock profile and much better agreement of the shock location with the
experiment.

To match the experimental geometry for the measured shock oscillation frequency,
the computational domain is then extend to a total length of 21.3H. The simulation
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is carried out with FPBC and NRBC respectively using the same flow conditions.
The computed and experimental power spectra for the static pressure at the exit
location (x/H = 14.218) are shown in Figure 12.70. The experimental spectrum
(the bottom one) of the shock oscillation measured for this case has one dominant
frequency around 200 (Hz)[62]. The power spectrum computed by NRBC in the
middle plot shows that there is only one significantly dominant frequency at about
260 (Hz). The power spectrum computed by FPBC in the top plot has the dominant
frequency at 380 (Hz), which is obviously very different from the dominant frequency
of the experimental value of 200 (Hz). Obviously, NRBC gives better results than
the FPBS does, which is also better than the computed value of 317 (Hz) predicted
by Hsieh et al. [77]. It is evident that the NRBC improves the numerical accuracy
by reducing the false reflections, and the noise level created by NRBC is also much
lower than the one created by FPBC. The results show that the NRBC is essential
to accurately predict unsteady aerodynamic forcing.

8.6 Separated Flow of NASA 3D Flutter Cascade

NASA GRC conducted compressor cascade wind tunnel tests to mimic the flow field
of transonic compressor blade flutter[78][79]. The cascade is shown in fig. 12.71. As
the first validation step, the steady state solution of the 3D cascade is calculated. The
3D effect of the flow field is from two aspects: 1) the cascade geometry is different
near the end walls so that the blades can be mounted; 2) there is no endwall boundary
suction. Hence the endwall boundary layer will create the 3D effect in the spanwise
direction. The parameters used in the calculation is listed in Table 8.7.

Chord 8.89cm
Stagger angle 600

Solidity 1.52
Reynolds number 1.522 x 105

Inlet Mach number 0.5
Mesh size 150 x 60 x 40

CFL 5.0

Table 8.7: NASA 3D Flutter Cascade

The 3D mesh is shown in Figure 12.72. The mesh is highly clustered near the
cascade surface and the end walls to make sure y+ is within the range of 3. The
mesh is also clustered around leading edge and trailing edge. In Figure 12.73, the 2D
mesh of the top, midspan and bottom planes are plotted, which indicate the geometry
variation.

The boundary conditions are set as the following: at subsonic inlet, total pressure
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and total temperature are specified; at subsonic outlet, the static pressure is specified;
no slip adiabatic wall boundary condition are applied to bottom, top end walls and
the cascade surfaces; periodic boundary conditions are used in the pitch direction
upstream and downstream of the cascade wall surfaces.

8.6.1 Steady state results

Though the flow is separated and unsteady when the incidence is high, the time
averaged flow field is calculated with the local time stepping enabled and the dual
time stepping disabled in the code. The solution is obtained when the calculated
flowfield is unchanged. The steady state solution is also used as the initial solution
for the corresponding unsteady calculation.

At incidence angle of 00, the computed midspan surface static pressure distribution
is in a very good agreement with the experimental measurement[79] as shown in Figure
12.74.

An incidence of 100 is chosen for the following numerical study. The van Leer
scheme is used to evaluate the inviscid flux. Though the van Leer scheme is more
diffusive than the Roe schemee, when working with the Baldwin-Lomax turbulence
model, it gives better agreement with the experiment in the current code. The Roe
scheme predicts the separation larger than the experiment. The inlet Mach number
is obtained by adjusting the back pressure level.

The result of the case with inlet Ma=0.5 is described in this section to demon-
strated the characteristics of the 3D separation flow field. More results for Ma=0.8
and Ma=1.18 can be found in [80]. In the case of Ma=0.5, the corresponding
Reynolds number is 9.6699x 10i. The CFL in the Gauss-Seidel iteration is 5.0. The
calculation starts from a flowfield at rest.

The flow stream lines on the mid-span plane is shown in Fig. 12.75. The flow
exhibits a large separated region on the suction surface that starts immediately at
the leading edge and extends down to 45% of the blade chord. The flow pattern on
the suction surface is plotted on the left in Fig. 12.76. The separation region has a
parabola shape, which is approximately symmetric about along the blade mid-span
line and extends to the blade upstream corners. Two counter rotating vortexes are
formed downstream of the blade leading edge corners on the suction surface at its
two ends. The experiment visualization with dye oil technique is shown in Fig. 12.76
on the right. The computation results agree with the experiment fairly well, except
that the numerical results shows a fuller separation region in span-wise direction.

The mid-span static pressure distribution is plotted and compared with the exper-
iment measurement in Fig. 12.77. A reasonable agreement is achieved. The pressure
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is expressed as the pressure coefficient,

P - Pin
• Pin gn

where p is the local static pressure. Pin, Pin and Uin are the averaged static pressure,
density and velocity at the inlet.

On the leading edge of the suction side, the numerical pressure results varies more
steeply than that given by the measurement. The separation region denoted by the
cross of the pressure distributions on suction and pressure surfaces agrees very well
with the experiment.

The separation region is enlarged when Roe scheme is used to calculate the inviscid
flux. A possible reason for the difference is the application of turbulence model on
the H-type mesh in the current code. It is shown that the implementation details the
Baldwin-Lomax model is vital to the resulted turbulent viscosity accuracy. Better
agreement is obtained in [81] for the same case, where the Roe scheme is applied
on an O-type mesh. The H-type mesh in the current code is generated by an ellip-
tic method as a whole, which meets difficulty in the mesh orthogonality in the wall
boundary region, which affects the accuracy in calculating the outer layer eddy vis-
cosity coefficient. A two-layer H-type mesh is used in [82], where an inner algebraic
mesh is surrounded by an outer elliptic method generated mesh. The the inner mesh
is designed to achieve better orthogonality. These grid generation techniques will be
implemented in the code in the next step research work.

8.6.2 Unsteady separated flow simulation

The separation is believed to bring high unsteadiness to the cascade flow pattern. The
inlet Mach number is an important factor which affects the separation characteristics [80].
To study the influence of the inlet Mach number on the unsteady characteristics of
the separated flow, numerical simulation is carried out for high incidence angle cases
with Mach number 0.5, 0.8 and 1.18. Each unsteady calculation is carried out based
on its corresponding steady state result.

Due to the limitation of the computation capability, the physical time interval is
chosen as large as 10% of the characteristic time of the cascade, t, = c/Uin. Uinis the
inlet velocity. This time interval varies with the inlet Mach number. The CFL number
used in the pseudo time Gauss-Seidel implicit iteration is 20.0. Twenty pseudo time
steps are used for each physical time step. Two parameters are recorded to analyze the

unsteady characteristics of the separation flow. The first is the mid-span separation
bubble length(x), which is marked by the streamwise zero velocity point at the first
inner mesh point on the suction surface. The second parameter is the unsteady static
pressure (p) measured at the location of 13% downstream the leading edge on the
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suction surface, which is the same as the experiment measurement location. The
unsteady pressure is refereed as "check point pressure" in the following.

Ma = 0.5

In the case of Ma = 0.5, the physical time interval is set as 0.052744 ms.

Fig. 12.78 shows the time history of the separation length oscillation in a time
segment of 16 ms (30t,). The separation length increases rapidly from 0.45c to 0.66c
in the first 1.63 ms (3tQ) and then decreases to 0.63c at t =2 ms (3.8t,). The separation
region then grows up again toward downstream to 0.73c at t =3 ms (5.7t,). With
the time progressing, the separation region boundary oscillates back and forth on the
suction surface. The average length tends to increase gradually until a periodic state
is reached after 4.4 ms (8.3t,). The oscillation of the separation length is between
0.73c and 0.76c with a fixed cycle. The periodicity information is clearly extracted
using the FFT technique. The separation region oscillation spectra is calculated from
the unsteady data after 4.4 ms (8.3t,). The frequency spectrum is shown in Fig. 12.79,
which clearly shows a peak at 770 Hz. This indicates the separation length oscillates
with a period of 1.25 ms (2.37Q).

Compared with the steady state solution, the unsteady separation calculation re-
sults in larger separation size. The reason is not clear.

The unsteady check point pressure data shows similar characteristics of the un-
steady separation flow. Fig. 12.80 shows a segment of 16 ms (30Q) pressure oscillation
data. The pressure start at p =2.659 from the steady state results. The oscillation
is between p =2.68 and p =2.72 after t =4.4 ms (8.3t,). The oscillation amplitude
is about 1.5% of the averaged pressure level. The frequency spectrum is shown in
Fig. 12.81 with a peak at 770 Hz.

The mechanism behind the unsteady characteristics of the separation is illustrated
in Fig. 12.83, where the evolution of a separation oscillation cycle is plotted. The
stream lines at 8 time steps show the leading edge vortex shedding development.
There are 4 physical time steps (0.21 ms, 0.4t,) between 2 sequential plots. The
relationship between the oscillation of the pressure and the separation length is shown
in Fig. 12.82.

At the starting time level a (t =4.4305 ms, 8.4t,), the separation region has just
passed the maximum length location. There are 2 vortexes in the separation bubble.
They are rotating in the same direction. The check point pressure is going up. At
time level b (t =4.6415 ms, 8.8t,), the two vortexes are pushed toward downstream.
The second vortex diminishes. The first vortex grows quickly and becomes the only
vortex in the separation bubble. The separation region becomes thicker in the span-
wise direction, but shorter in the stream-wise direction. The surface check point
pressure reaches its maximum level at this time level. At time level c (t =4.8524 ms,
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9.2t,), the separation bubble approaches its shortest length in stream-wise direction,
and maximum thickness in the span-wise direction. The check point pressure is
going down. At time level d (t = 5.0634ms, 9.6t,), the separation bubble has passed
the minimum length location, and begins to extend toward downstream. The check
point pressure is still going down. At time level e (t =5.2744 ms, 10.0t,), a new
vortex is generated at leading edge and becomes the first vortex. The check point
pressure reaches its minimum value. The separation length is still increasing. At time
level f (t=4854 ms, 10.4t,), the first vortex continues to grow. The second vortex
is pushed toward downstream. Both the check point pressure and the separation
length are going up. The latter is approaching its maximum location. At time level g
(t =5.6964 ms, 10.8t,), the two vortexes have almost the same size, the flow structure
is close to the starting time level a. The separation boundary has passed its maximum
location and begin to shrink toward upstream. The check point pressure is going up.
At time level h (t =5.9073 ms, 11.2t,), the second vortex diminishes. A new cycle is
started at this time level.

The leading edge vortex shedding exhibits obvious periodical pattern in its evolu-
tion process. The leading edge keeps generating new vortexes. The new vortex pushes
the old vortex bubble toward downstream and the old vortex decreases in size at the
same time. When the two vortexes become of the same size, the maximum separa-
tion length is reached, where the separation bubble has the thinnest size in span-wise
direction. As the new vortex grows further, the old vortex will diminish. The sepa-
ration bubble will move upstream and makes the bubble thicker. The leading edge
surface check point pressure reaches its maximum level when the separation bubble
shrinks and reaches its minimum level when the separation bubble boundary extends.
The vortex generation, pressure variation and separation length oscillation have the
same frequency characteristics with a phase difference as shown in Fig. 12.82. Such
oscillation is maybe one of the reasons to cause to flutter.

Ma = 0.8

The physical time interval used in the calculation for the case of Mach number 0.8 is
0.0342 ms. A similar flowfield unsteady characteristics is exhibited in the computation
results.

Fig. 12.84 and Fig. 12.86 show the separation length and the checkpoint static
pressure oscillation history in a time period of 21 ms. A clear periodicity is shown
in these two figures. It is found in the time averaged steady state study in [80] that,
the increase of the inlet Mach number will enlarge the separation bubble in size.
Fig. 12.86 indicates that the inlet Mach number increase also increases the amplitude
of the pressure oscillation. The oscillation amplitude is increased to about 5% of
the averaged pressure level. The increased kinetic energy in the inflow bring higher
unsteadiness intensity to the separated flow filed.
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The corresponding FFT frequency analysis is shown in Fig. 12.85 and Fig. 12.87
respectively. The frequency analysis is based on the oscillation data after t=5 ms.
The unsteady separation flow exhibits higher oscillation frequency because of the
increased inlet Mach number. A clear frequency spectrum peak is shown at 1400 Hz
in both figures, twice the frequency in the case of Ma = 0.5.

Ma = 1.18

In the steady state simulation of the cascade at Ma=1.18 in [80], the separation
flow characteristics are very different from those at subsonic. The further increased
kinetic energy in the inflow makes the flow attached to the blade surface in the
leading edge. A smaller sized separation region appears after the shock wave because
of the interaction of the shock wave and the turbulent boundary layer. The separation
bubble shrinks in size and is located only in a small region at the center of the suction
surface region.

The physical time interval in the calculation is set as 0.02483 ms. The pressure
check point is located outside of the separation region in the supersonic case. The
pressure oscillation history is shown in Fig. 12.88. The oscillation amplitude is very
small compared to the cases of Ma = 0.5 and Ma = 0.8. The flow tends to steady at
the leading edge. The pressure oscillation frequency spectrum is shown in Fig. 12.89.

The computed characteristics of the separation flow above is similar to the experi-
ment measurement in [83]. In [83], when the blade is fixed, the blade surface pressure
for low subsonic inlet flow at Ma=0.5 and low supersonic inlet flow at Ma=1.1 ex-
hibits very low unsteadiness and very strong self-induced oscillations with a frequency
of 110Hz is observed in high subsonic inlet flow at Ma=0.8. However, the strong low
frequency oscillation is attributed to the tunnel resonance characteristics instead of
the flow unsteadiness due to the flow separation in [84]. Even though, the cascade
flow separation is believed to have a direct relation with the wall surface pressure
unsteady oscillation, which is an important factor to the flutter. Further detailed
numerical research is necessary to discover the mechanism.

8.7 Forced Vibration of the NASA Flutter Cas-
cade

8.7.1 Parameters used in flow analysis

The steady state static pressure coefficient is defined as the following,

C, (x/c) = p (1/c) - (8.16)
U--2 -
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where P0o, Po and U.. are the averaged pressure, density and velocity at inlet.

The blades vibrate harmonically with a constant IBPA. The motion of the nth
blade is defined by the blade deflection angle[?],

a, (t) = ao + &Re [exp (i (wt + n/3))] (8.17)

where n is the blade index, t is the time, a0 is the deflection angle at the mean blade
position, & is the amplitude of blade deflection, Re denotes the real part of a complex
value, w is the angular frequency, 83 is the inter blade phase angle.

The reduced frequency k, is defined based on the chord length C as the following,

k,: = W (8.18)

The first harmonic unsteady pressure coefficient is defined as,

C'W Pi W (8.19)

where P, (x) is first harmonic pressure along the blade surface. It is a complex value
obtained from the unsteady pressure signals using the Fourier transformation. p (x)
has a phase angle relative to the blade motion a.

The time dependent aerodynamic moment coefficient is defined as,

-J rp(x) ds

C(t) 1 U2 r (8.20)

where p (x) is the unsteady pressure along the blade surface, s is the surface area vector
pointing outward from the blade, r is the vector pointing from the pivot location to
an arbitrary point x on the surface.

The imaginary part, or the out of phase part of the unsteady pressure determines
the damping or excitation of the blade motion. The aerodynamic damping coefficient
is defined as,

-E = -I m (Cm) (8.21)

where Im denotes the imaginary part of a complex value. A positive _ corresponds
to a damped oscillation.

8.7.2 The Cascade

The NASA Lewis Oscillating Cascade test section consists of 9 identical airfoils with
the cross section similar to the tip airfoil of modern low-aspect ratio fan blades[?].
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The airfoil has a chord of 8.89 cm and is installed with a stagger angle of 600. The
solidity is 1.52. In the experiment, the inlet Mach number is 0.5. All blades vibrate
simultaneously along a pitching axis at 0.5 chord with a constant IBPA of 180'. The
oscillating amplitude is 1.2' and the reduced frequency based on chord varies at 0.4,
0.8 and 1.2. The blade motion is identical on every other blade. The two neighboring
blades always vibrate in opposite direction.

The inlet Mach number Ma = 0.5 is achieved by adjusting the outlet static pressure
level. The Reynolds number based on the chord length is 9x 10'. The flow incidence is
00. For the unsteady dual-time stepping, one physical blade oscillation cycle is divided
into 100 time intervals and 100 pseudo time Gauss-Seidel iterations are carried out for
each physical time step. The 100 pseudo time iterations are proved to be sufficient to
obtain a converged solution within a physical time step with the residual reduced by 3
orders in magnitude. Before the unsteady simulation, the corresponding steady state
calculation is carried out to obtain the initial flow field for the unsteady computation.
The inlet flow angle is adjusted to 610 to obtain good agreement with the steady state
experimental surface pressure distribution.

Before the full scale computation; a simplified 2-passage cascade is computed with
a reduced frequency of k, = 0.8 by applying the periodic boundary condition. The
information of the moving mesh and the conservative variables are exchanged across
the periodic boundary. The multi-passage full scale simulation is then conducted
for the 9-blade cascade with the wind tunnel side walls for more realistic results.
The periodic boundary condition is not needed. The vibration frequencies of k,=0.4,
0.8 and 1.2 are calculated and compared with the experiment measurement. The
influence of the end walls are studied by comparing the results of k,=0.8 from both
simulations.

8.7.3 Computation domain decomposition and mesh gener-
ation

As shown in Fig. 12.107, the computation domain which is consistent with the exper-
iment configuration is split into 10 subdomains based on flow passages P1 through
P10. The 10 subdomains are computed by 10 CPUs running in parallel. The subdo-
mains are separated from their neighbors by the blade surfaces BI through B9 and the
MPI interface boundaries. The MPI interface boundaries are straight lines passing
through the leading edge (LE) and trailing edge (TE) of the blades with appropriate
angles in accord with the local flow direction. The pitchwise distance between the
end wall and the blade is half of the inner pitch distance. The US (upper surface) is
the suction surface and LS (lower surface) is the pressure surface.

The inlet and outlet boundaries are set as 1.5 and 3 times chord length away from
the airfoil LE and TE in axial direction. A part of the mesh is shown in Fig. 12.108
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with the regions of LE and TE zoomed in for more details. The H-type mesh is
generated for each subdomain respectively. Each subdomain shares the grid point
distribution on the common MPI interface boundaries with its neighbors. To achieve
good orthogonality on the blade surface, an additional algebraic boundary layer mesh
is generated in the wall surface region. As shown in Fig. 12.108, the grid lines are
orthogonal on all blade surfaces except the small regions at LE and TE. The mesh
size is 195(e) x 180(q) for all subdomains. For clarity, the mesh is plotted every 4 lines
in the un-zoomed plots. The blade surface has 100 points in streamwise direction.
The boundary layer has 40 points in pitchwise direction. Because of the high gradient
of the flow variables in near wall region, the mesh is clustered near the wall surfaces.
On the blade surfaces, the grid points are also clustered toward the LE and the TE
in streamwise direction.

8.7.4 Simulation in two passage cascade

The two passage cascade simulation uses the meshes of two inner neighboring passages
(P2 and P3) in the compressor cascade. As shown in Fig. 12.109, The blade between
the two passages is called BC (blade at center) and the two blade surfaces on the two
outside periodic boundaries are treated as blade BP (blade at periodic boundary) .

The steady state pressure coefficient distributions along the blade surfaces are
plotted in Fig. 12.110. The pressure coefficient predicted agrees well with the mea-
surement. The result on BC agrees very well with that of BP, which shows good
periodicity is achieved on the pitchwise direction.

Fig. 12.111 shows the pressure variation history on two points on the suction
surface (US) and the pressure surface (LS) respectively. The pressure on the suction
surface is located at x/C = 0.15 and the pressure on the pressure surface is located
at x/C = 0.1. The temporal periodicity is achieved very soon after the start of the
vibration simulation. Because of the excellent temporal periodicity, the unsteady
data extracted from a single blade motion cycle is enough for the unsteady Fourier
analysis. The IBPA of 1800 is clearly shown by comparing the pressure maximums
and minimums on BC and BP.

The unsteady pressure coefficients are plotted in Fig. 12.112 and Fig. 12.113 for
suction surface (US) and the pressure surface (LS) respectively. The unsteady pres-
sure coefficient Cp is expressed in terms of the real part or in phase part and the
imaginary part or out of phase part. On the suction surface, as shown in Fig. 12.112,
the CFD results compare fairly well with experiment data after 30% chord. The real
part of the coefficient is predicted lower than experiment data on leading edge, but
the trend agrees very well with the experiment. The imaginary part is over predicted
in the leading edge region. On the pressure surface, as shown in Fig. 12.113, the
real part of the unsteady pressure coefficient agrees well with the experiment data.
The imaginary part is under predicted compared with the measurement on the front
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part of the blade. This means that the CFD does not accurately capture the phase
angle difference between the pressure response and the blade motion. A local flutter
stability analysis based on the aerodynamic work per cycle suggested by Buffum[?]
is presented in Fig. 12.114 by plotting (0.5 - Im (Cp,upper - Cp,iower)lst. The cur-
rent numerical simulation predicts a larger local stable region on the front part of
the blade. On the aft part, the experiment data indicates a shallow stable region.
The CFD predicts the trend very well. The aft part stable region is predicted more
shallow than the experiment.

8.7.5 Simulation in full scale cascade

The full scale steady and unsteady simulation use the same inlet flow angle as that
of the 2-passage case. In the steady state calculation, all blade are parallel to each
other at their mean positions. As shown in Fig. 12.107, the end wall is made up of 3
sections, which have different angles relative to the x axis: a, = 61', a 2 = 600 and
a 3 = 640. The middle section is parallel to the blade at its mean position. The front
and aft sections follow the inlet and outlet averaged flow directions obtained in the
2-passage steady state computation.

The steady state Mach number contours for the full scale cascade is shown in
Fig. 12.115. The flow pattern is highly influenced by the end wall especially for
the near end wall passages, P1 and P10. The influence is reduced rapidly from
the boundary passages to the inner passages. Good periodicity in flow pattern is
achieved among the inner passages (P3 through P8). Three center blades, B4, B5
and B6 are chosen to study the steady and unsteady periodicity in the rest of the
paper. Even though the periodicity looks good in the Mach contour plot, the static
pressure distribution still shows the influence of the end walls on different blades.

Fig. 12.116 shows the pressure coefficient chordwise distribution on the 3 center
blades. The experiment measurement and the 2-passage calculation results are also
plotted for comparison. The surface pressure increases gradually from B4 to B6 on
both the pressure surface and the suction surface. The pressure distribution on blade
B6 is closest to the 2-passage periodic results on most part of the surfaces. The
experiment measurement also shows the pressure variation on different blades[?], but
its variation trend is opposite to the current numerical results. A possible reason for
this difference is that the inlet and outlet end wall angles used in the experiment may
differ from the values used in the current simulation. The experimental angles are not
available. Such a pitchwise flow pattern difference is also expected in the following
unsteady calculations.

The full scale unsteady simulation is first carried out for a reduced frequency k,
0.8 to study the end wall influence on the periodicity of the blade unsteady char-

acteristics. Figs. 12.117 and 12.118 are the unsteady pressure coefficient chordwise
distribution on the 3 center blades compared with the 2-passage cascade and the ex-
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periment results. On the upper surface, as shown in Fig. 12.117, the 3 blades have
very similar unsteady coefficients on most of the chordwise distance. The results of
blade B6 are closest to those of the 2-passage calculation. The difference between the
full scale results and the 2-passage results mainly locate at the front and center part
of the blade. The full scale results agree with the experiment better in the center
part. On the lower surface, as shown in Fig. 12.118, the full scale results of the 3
blades are similar. The 2-passage results axe closer to the experiment data in the real
part.

As shown in Fig. 12.119, the full scale calculations predict higher stability on the
front part of the blade compared with the 2-passage results. The full scale results are
closer to the experiment measurement on the aft part of the blade. In the chordwise
region of x/C = 0.5 to x/C=0.7, the measured stability is better predicted in the full
scale results. The 2-passage results shows instability in the same region. The end wall
influence on the flow pattern periodicity is clearly shown in the unsteady aerodynamic
moment oscillation plots within a whole blade motion cycle in Fig. 12.120. The
moment is plotted versus the normalized deflection angle, a' = (a - a0 ) /&. Because
of the end wall influence, the moment oscillations on the 3 center blades are different.
They are also different from the 2-passage calculation results. The anti-clockwise
direction of all the unsteady moment curves indicates negative work acted by the fluid
on the blade. The blade motion is therefore damped down by the fluid flow. The
blade motion is stable, which corresponds to a positive damping coefficient E. The
area enclosed by the moment curve indicates the magnitude of the work exchanged
between the fluid and the blade, which is also proportional to the magnitude of the
damping coefficient.

The damping coefficients on all the 9 blades in the full scale calculation versus
the blade number are shown in Fig. 12.121. The damping coefficient varies among
the blades. The damping coefficients for blade B4, B5 and B6 are 0.67, 0.65 and
0.68 respectively. Blade B1 has the lowest stability (=- =0.45) and blade B9 has the
highest stability (P = 1.4). The damping coefficient distribution is more uniform on
the center blades (B3 through B7), even though small variation exists. The blade
stability in the full scale cascade depends on the location of the blade. The damping
coefficient obtained in the 2-passage periodic computation is 0.55.

Fig. 12.122 plots a series of Mach number contours around blade B5 and B6. A
separation bubble is generated and grows periodically on the leading edge of the suc-
tion surface. At t =0, the two blades are initially located at their mean positions
and are parallel to each other. Blade B5 then rotates in the counter-clockwise di-
rection with a negative deflection angle (nose down). At the same time, blade B6
is rotating in the clockwise direction with a positive deflection angle (nose up). At
t=0.2T, blade B5 is close to its minimum deflection position. The separation bubble
at its LE is pushed downstream and shrinks in size. At t=0.4T, blade B5 is rotating
back from its minimum deflection location toward its mean position, the separation



8.7. FORCED VIBRATION OF THE NASA FLUTTER CASCADE 81

bubble disappears from the suction surface. At t = 0.8T, a new separation bubble
is generated when blade B5 passes its maximum deflection position and rotates back
toward its mean position. The bubble obtains its maximum size when the blade is
close to its mean position. Similar phenomenon is observed on the neighboring blade
B6, but with a phase difference of 1800.

More extensive unsteady simulations are carried out for reduced frequencies k,
0.4 and k, = 1.2. Figs. 12.123 and 12.124 show the unsteady pressure coefficient
chordwise distribution of k, = 1.2. Similar to the results of k, = 0.8, the predicted
unsteady complex pressure coefficients are close to each other on the 3 center blades,
even though some small difference exists. As shown in Fig. 12.123, on the upper
surface, the imaginary parts of CFD results agree very well with the experiment
results except that it is over-predicted in the region of x/C=0.15 to x/C=0.40. The
real part is also predicted quite well on the middle and aft part of the blade. On
the lower surface, as shown in Fig. 12.124, the predicted real parts compare very well
with experiment. The Imaginary part is under-predicted from LE to x/C = 0.7.

The local stability analysis for k, = 1.2 is plotted in Fig. 12.125. The correct
trend is predicted compared with the experiment measurement, even though the
magnitude does not agree very well. The stability is over-predicted in LE region.
The unstable region predicted on the front part of the blade is smaller than the
experiment results. The stability is predicted on the aft part, but the magnitude is
smaller than the experiment data. The damping coefficients for all the blades are
plotted in Fig. 12.126. The damping coefficients for blade B4, B5 and B6 are 0.81,
0.78 and 0.84 respectively. The stability increases with the frequency. Similar to the
results of k, = 0.8, the most stable blade is blade B9 (-==1.5) and the least stable
blade is blade BI (E=0.6). The damping coefficient is more uniformly distributed
on the central blades. The variation of the damping coefficient on the center blades
increases with the increasing frequency.

Because of the lack of experiment data, the unsteady pressure coefficient of k,=0.4
is not presented for comparison. However, the local stability is analyzed and com-
pared with the experiment data in Fig. 12.127. Similar to the results of k, = 0.8 and
k, = 1.2, the trend is predicted well, but the magnitude differs from the experiment.
As expected, the damping coefficient distribution is more uniform on center blades
(Fig. 12.128). The variation of their magnitudes decreases with the decreasing vibra-
tion frequency compared with the high frequency cases of k, = 0.8 and kc, 1.2. The
damping coefficients on blade B4, B5 and B6 are 0.448, 0.446 and 0.434 respectively.
The most stable blade is B9 with E = 1.02 and the least stable blade is B1 with =

0.28.

The unsteady aerodynamic moment oscillations on blade B5 under the 3 frequen-
cies under investigation are plotted together and compared in Fig. 12.129. The damp-
ing coefficient increase with the increasing frequency is indicated by the increased
area enclosed by the unsteady moment oscillation curve. The local stability analysis



82 CHAPTER 8. RESULTS AND DISCUSSION

is summarized for all the 3 frequencies in Fig. 12.130. The computation results in-
dicate higher stability near the leading edge for higher frequency vibration, which is
consistent with the experiment measurement. Even though the destabilization region
on the front part of the blade and the stability magnitude on the aft part of the blade
predicted by the numerical computation are smaller than those in the experiment,
the trend is predicted well. Both the destabilization and stabilization increase with
the increasing frequency.

8.8 3D AGARD Wing Flutter Prediction

The result of steady state transonic ONERA M6 wing is calculated first in order
to validate CFD solver. Then, the flutter boundary of an AGARD wing 445.6 is
calculated.

8.8.1 Steady State Transonic ONERA M6 wing

As a validation of the three dimensional solver for a transonic wing, the steady state
solution of the transonic ONERA M6 wing is calculated. The freestream conditions
for this study are listed in Table 8.8 below.

Table 8.8: Free-stream condition for ONERA M6 wing

Mach number 0.8395

Static Pressure (psia) 12.2913
Temperature (R) 447.0

Angle-of-Attack (deg) 0.0
Reynolds Number I 19.7x 106

This case is calculated using an 0-type grid with the dimension of 144 (around
wing) x60 (normal to the wing) x40 (spanwise). The far field boundary is located
15 chords away from the chord center of the wing. The surface mesh of the wing is
depicted in Figure 12.133.

The Zha E-CUSP2 scheme is used to evaluate the inviscid fluxes with the 3rd
order MUSCL type differencing [85]. The turbulent Reynolds stress and heat flux are
calculated by the Baldwin-Lomax algebraic model[48J.

The computed surface pressure distributions at various cross sections are shown in
Figure 12.134, together with the experimental data given by Schmitt et al. [86]. The
location of z/b = 0.2 is near the root, and z/b = 0.99 is at wing tip.
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Overall, very good agreement is obtained between the computation and experiment
for each cross-section.

8.8.2 Validation of Structural Solver

To validate the structural model used in the present study, the dynamic responses
of a flexible plate wing shown in Figure 12.135 is calculated and compared with the
results by using the finite element solver ANSYS. The purpose of the study is to find
out how many mode shapes are required for accurate representation of the structural
motion under dynamic force.

The plate wing has the same outline as the AGARD wing 445.6, and its first
mode natural vibration frequency is nearly the same as the corresponding one of the
AGARD wing 445.6. The thickness of the plate is 0.3", the root chord is 21.96", the
tip chord is 14.49", and the spanwise length is 30". The plate wing consists of 80
elements and 861 node points on each side of the wing. The plate wing is held fixed
on the root.

A time-dependent force is exerted at node point 510 which is located at the mid-
point of the wing tip. The three components of the force in the unit of pound are:

f, = 0.5sin(27rfet), fu = 0.3sin(27rfet), f2 = 0.8sin(2irfet) (8.22)

where the exciting frequency fe is equal to 10 Hz. The modal damping ratio (j = 0.01,
the time step used is 0.0005 second. The dynamic responses at several locations are
recorded. Figure 12.136 shows the time histories of the responses at the node point
491 which is located almost at the center of the plate wing. The numerical predictions
by the present structural solver with first five mode shapes agree excellently with the
results using ANSYS with first five mode shapes and the full model. The three results
are virtually duplicated to each other and are indistinguishable.

8.8.3 AGARD Wing 445.6 Flutter

The AGARD 445.6 wing is selected to demonstrate the capability of the present solver
for predicting the flutter boundary. This wing has a quarter-chord sweep angle of 45
degree, an aspect ratio of 1.65, a taper ratio of 0.6576, and a NACA65AO04 airfoil
section in the streamwise direction. The weakened wing model (Model 3) listed in
[55] is chosen for this study. The geometry of the wing and its first six mode shapes
as well as the experimental flutter results are also provided in the same report [55].
The wing structure is modeled by its first five natural vibration modes in the present
computation.
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The simulations start with the stationary rigid body wing model. After the steady
state flow field around the wing is fully developed, the rigid body wing is switched to
the flexible wing model. As a small imposed perturbation, the first mode displacement
of the structural motion is set into sinusoidal motion for one cycle with the maximum
amplitude of 0.0005 - 0.001 and the first mode frequency of the wing. Then the wing
is allowed to deflect in response to the dynamic force load. Within each physical time
step, the solution is usually converged within 50 iterations.

In Figures 12.137 through 12.139 the time histories of generalized displacements
of the AGARD wing 445.6 at M,, = 0.96 are plotted for three different V*. In these
figures, from V* = 0.26 to V* = 0.315, the plots correspond to the damped, neutral,
and diverging responses, respectively. When the value of V* is smaller than the
critical value on the flutter boundary, the amplitudes of all modes decrease in time
corresponding to the damped response as shown in Figure 12.137. Once the value
of V* coincides with or is close to the critical value, the neutral response appears as
shown in Fig. 12.138. When the value of V* is above the neutral stability point,
the amplitudes of first five modes grow very fast, a diverging response is reached as
shown in Fig. 12.139.

For a given Mach number, several runs with different V* are needed to determine
the location of the flutter boundary using bisection method. When V* is varied,
the free-stream Reynolds number is changed accordingly. Strictly speaking, the free-
stream Reynolds number needs to be updated and the initial steady-state flow field
with actual Reynolds number should be re-generated for each run. In present sim-
ulation, the initial flow field and the Reynolds number remain unchanged when V*
is varied since the effect on final solution due to small variation in the free-stream
Reynolds number is negligible when a turbulence model is used.

The comparison of computed flutter boundary and experimental data for AGARD
Wing 445.6 is illustrated in Figure 12.140. Overall, the computed results are in good
agreement with the experimental data. The "sonic dip" near Mach = 1.0 measured in
the experiment is very well captured by the computation. The discrepancy between
computed results and experimental data may be due to the inadequacy of the turbu-
lent modeling to capture the shock/wave boundary layer interaction or may be due
to the inaccurate measurement in the experiment as suspected by some researchers.
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Chapter 10

Conclusions

In this research, a new high efficiency low diffusion upwind scheme is developed and is
applied to moving grid systems. The fully coupled fluid-structural interaction with the
new upwind scheme is successfully developed and predicts the 3d AGARD wing flutter
boundary very well. The SNM model at time domain is developed and validated. The
forced vibration of the NASA flutter cascade is simulated with reasonable agreement
with the experiment. A set of nonlinear non-reflective boundary conditions for Navier-
Stokes equations on the generalized coordinates is developed to avoid the reflective
waves. The code is ready to calculate the fluid-structural interaction of the mistunned
rotor bladed disk. However, since the funding is only 3 years, which is one year shorter
than the 4 years time period originally proposed, the mistunned rotor simulation is
not completed and will be done in future when the funding is available.

The following is the specific conclusions achieved in this research:

10.1 The New E-CUSP scheme

A new efficient upwind scheme based on the concept of convective upwind and split
pressure (CUSP) is developed. The upwinding of the convective term and the pressure
splitting are consistent with their characteristics directions. The numerical dissipation
of the new scheme at stagnation is low and is not greater than that of the Roe scheme.
The scheme hence is able to resolve accurately wall boundary layers, and are able to
capture crisp shock waves and exact contact discontinuities. The performance of the
new scheme is compared with the Roe scheme, AUSM+ scheme, Van Leer scheme,
and Van Leer-Hdnel scheme.

For the 1D Sod shock tube problem using Euler explicit scheme, the new scheme
has the crispest shock profile and highest allowable CFL number of 1.0. For a slowly
moving contact surface, the new scheme is demonstrated to capture the exact contact
surface discontinuity with the maximum allowable CFL of 1.0, which is far greater
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than that of the other schemes. For a quasi-lD transonic nozzle, all the other schemes
generate expansion shocks at the sonic point. The new scheme does not have the
expansion shock even though it has a glitch at the sonic point, which is due to the
discontinuity of the first derivative of the pressure splitting at sonic point.

For a Mach=2.0 supersonic adiabatic laminar flat plate boundary layer, the new
scheme is able to accurately resolve the boundary layer velocity and temperature
profiles using the first order differencing. The solution is as accurate as that of the
Roe scheme and the AUSM+ scheme and hence demonstrates the low diffusion of the
new scheme.

For a transonic converging-diverging nozzle, oblique shock waves and reflections
are crisply captured even though the shock waves do not align with the mesh lines.
The predicted wall surface isentropic Mach number distribution agrees well with the
experiment. For a transonic inlet-diffuser with shock/turbulent boundary layer inter-
action, the new scheme and the Roe scheme predict the surface pressure distributions
agreeing well with the experiment for the case of a weak shock. For the strong shock
case, both the new scheme and the Roe scheme over predict the strength of the shock
wave. However, the pressure distribution predicted by the new scheme is closer to
the experiment. The AUSM+ solution has large pressure oscillations.

In the applications of the original Zha-Hu E-CUSP scheme, it is found that there is
temperature oscillations near wall boundaries. The scheme is modified by replaceing
the pressure term with the total enthalpy in the smoothing factor of the energy
equation. The temperature oscillations are removed in the modified scheme, which is
named Zha E-CUSP2 scheme.

10.2 Non-Reflective Boundary Conditions

The non-reflective boundary conditions of Poinsot and Lele[33] for 3D Navier-Stokes
equations are extended to the generalized coordinates in this paper. The character-
istic form Navier-Stokes equations in conservative variables are given. The NRBC is
applied numerically in an implicit time marching method. The governing equations
for inner domain and NRBC are solved simultaneously in a fully couple manner.

For the unsteady subsonic vortex propagating flow, the fixed pressure outflow
boundary conditions imposing the exit pressure generates serious wave reflection and
the flow field is distorted, whereas, the NRBC developed in this paper generates clean
results with no wave reflection and solution distortion.

For the transonic inlet-diffuser, the NRBC is not necessary for steady state solu-
tions since the reflective waves are diffused when the solutions are converged. How-
ever, for unsteady flows, the NRBC is essential. The fixed pressure outflow boundary
conditions generate strong reflective waves due to the shock/boundary layer inter-
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action, which makes the shock oscillating motion far greater than the experimental
data. When the NRBC is applied, the shock oscillation is dramatically reduced and
the computed time averaged pressure distributions and frequency spectrum agree
much better with the experiment than FPBC.

The NRBC is essential for unsteady fluid-structural interactions, in particular for
the internal flows such as the mistunned rotors.

10.3 2D Flutter Prediction

The efficient high resolution E-CUSP upwind schemes developed in this research
have been successfully extended and applied to calculate flow-induced vibration with
a moving grid based on fully coupled fluid-structural interaction.

For an elastically mounted cylinder, various cases with different structural param-
eters have been calculated. The predicted displacement agrees very well with the
experiment and the numerical results of other researchers.

For the forced pitching NACA 64A010 airfoil, the computed lift oscillation agrees
accurately with the experiment. The computed moment oscillation has large devia-
tion from the experiment, but the results have a similar order of accuracy as other
researchers have achieved. The discrepancy may be due to the inaccurate prediction
of the surface shear stress caused by the inadequacy of the turbulence modeling and
experimental uncertainties.

The same airfoil has been calculated as an elastically mounted airfoil with free
vibration in plunging and pitching directions. The computations have been carried
out using different values of velocity index V* which are below, close, and beyond
the critical point on the flutter boundary when Mach number is fixed. The corre-
sponding responses of the airfoil flows are well simulated. The predicted value of V*
at the bottom of the transonic dip is consistent with the numerical results of other
researchers [5, 73, 70].

10.4 SNM model of Transient Response

The transient response (time domain) structural vibration model for mistunned rotor
bladed disk based on the efficient Subsets of Nominal Modes (SNM) model is devel-
oped. The vibration response results predicted by the SNM model for a full annulus
bladed disk with blade frequency variation agree well with the results predicted by the
finite element model. The simplified model was designed such that transient response
computations can be performed in ANSYS with tractable computational cost. The
comparison of the results showed that SNM model can capture both low frequency
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and high frequency responses. In the case of low frequency excitation, only one family
of blade modes is needed in SNM. In the case of high frequency excitation, multiple
families of blade modes are needed in SNM. The computational efficiency was im-
proved by at least 30 times over ANSYS direct simulations for the cases examined.
The improvement is expected to be much greater when high fidelity ANSYS models
are needed.

10.5 Separated Flows in NASA 3D Flutter Cas-
cade

1. The high incidence cascade separation flow shows a sinusoidal pattern on the
oscillation of the surface pressure and the separation bubble size.

2. The leading edge vortex shedding is the mechanism behind the unsteady char-
acteristics of the subsonic high incidence separation flow. New vortexes are
continuously generated at the suction surface leading edge. The new vortex
grows and pushes the old vortexes downstream. The interaction between the
vortexes results in the periodical oscillation of the separation bubble size and
the surface pressure. The vortex generation, pressure variation and separation
length oscillation have the same frequency characteristics with a phase differ-
ence.

3. The characteristics of the separation flow is determined by the inlet Mach num-
ber. When the inlet flow goes from lower subsonic to higher subsonic, the
size and the oscillation intensity of the separation bubble are enhanced. The
flowfield oscillation peak frequency increases. When the inflow goes further to
supersonic, the flow is attached on the leading edge. A small size separation
bubble due to the interaction of the shock wave and the turbulent boundary
layer is located right after the shock wave.

10.6 Forced Vibration of the NASA Flutter Cas-
cade

The fully nonlinear time dependent Navier-Stokes equations are solved with the paral-
lel computation technique to simulate the unsteady flow field in a full scale compressor
cascade with forced blade vibration. The calculation in this paper is conducted with
a low incidence of 0' and a subsonic inflow M= 0.5. The blade motion amplitude
is 1.2'and the inter blade phase angle is 1800. The full scale computation is carried
out for 3 reduced frequencies, 0.4, 0.8 and 1.2. The blade stability under different
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vibration frequency is analyzed. The end wall influence on the steady and unsteady
flow characteristics is studied by comparing the full scale results with the 2-passage
periodic cascade results at k, =0.8. The conclusions are the following:

1. The flow pattern in the full scale cascade shows that the flowfield is affected by
the existence of the end walls. The steady state blade surface pressure varies
with the the blade position in the cascade. The periodicity of the flow pattern
is improved by adjusting the end wall configuration. The end wall influence
attenuates rapidly from boundary passages to center passages. Good periodicity
is achieved in the inner passages. The full scale computation gives better results
of the unsteady pressure coefficient, local stability and aerodynamic moment
among the center blades.

2. All blades in the full scale cascade are stable, which is indicated by a positive
damping coefficient. The damping coefficient is more uniformly distributed
on center blades. The most stable and the least stable blades are the two
boundary blades. The damping coefficient and its variation across the center
blades increase with the increasing vibration frequency.

3. The unsteady pressure coefficients are predicted well compared with the ex-
periment measurement. The local stability trend is correctly predicted in the
numerical computation. The blade local stability is over-predicted on LE and
under-predicted on the aft part. The destabilization region located at the front
part of the blade is predicted smaller compared with the experiment. The pre-
dicted stabilization and destabilization increase with the increasing frequency,
so do the damping coefficients.

10.7 3D AGARD Wing Flutter Prediction

A numerical methodology with fully coupled fluid-structural interaction for predi-
cating 3-D transonic wing flutter has been developed. A dual-time step implicit
unfactored Gauss-Seidel iteration with Roe scheme are employed in the flow solver.
A modal approach structure solver is used to simulate the wing response. An effi-
cient mesh deformation strategy based on an algebraic method is developed and is
shown to be accurate and robust. The flow and structure solvers are fully coupled vis
successive iterations within each physical time step.

The accuracy of the modal approach structure solver has been verified by using
the finite element solver ANSYS. The results indicate that the first five modes are
sufficient to accurately model the wing structure in the present study.

The computed flutter boundary of AGARD wing 445.6 for free stream Mach num-
bers ranging from 0.499 to 1.141 is presented and compared well with the experimental
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data except for M, = 1.171, where the flutter boundary is over-predicted. The sonic
dip is very well captured.

10.8 Future Work

With the foundation laid in the research, the next step is to apply the fully coupled
fluid-structural interaction solver to mistunned rotor bladed disk.
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Figure 12.61: (u' - u½')/u'r, contours
at three instants for a vortex leaving the
domain using NRBC exit boundary con-
ditions.
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Figure 12.65: Steady state pressure
distribution along the bottom wall for

=otetp 0.82.

1.07

Top Wall

0.9

0.8 UU1.0-
Top Wall

0.7 0.9
0

060 0.8
aL 0

0.5 00.
0

a =0.10O
0.4 - -. - - (F=O0.15 a

= .2 00

a -= 0.35 o0
0.3 -0 Experiment 0.5 .1

0.2 . . . . 0.4 ; 01

XIH ........a=0.35
0.3 -0 Experiment

02ý_
Figure 12.64: Steady state pressure dist 5 0 / 51

bution along the top wall for ptei/Ptlp
0.82.
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0.72.
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Figure 12.74: Mid-span static pressure
distribution at Mach number 0.5

Figure 12.72: Cascade 3D mesh Figure 12.75: Mid-span Stream Lines at
Incidence Angle 100
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